ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
A Critical Review of Metal Matrix Composite Brake Rotor
Md Abdul Maleque

Chapter 2
Technology of Moulding for Composite Auto Brake Rotor
Md Abdul Maleque

Chapter 3
Fabrication of Nickel Aluminide (Ni₃Al) by Hot Isostatic Pressing (HIP)
Fauzal Abu Zairim, Iraj Alaei, I.I. Yaacob

Chapter 4
Investigation of Mechanically Alloyed Nd-Fe-B Powder
I.I. Yaacob and H.K. Jun

Chapter 5
Synthesis And Characterization Of Nanocrystalline Ni₃Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis
R.Ismail and I.I. Yaacob

Chapter 6
The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites
Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria

Chapter 7
Fatigue Fracture Mechanism of PVC/CaCO₃ nanocomposite
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 8
Mechanical Behaviour of Eco Core Composite Sandwich Structure
Norhasnidawati Johari Safiyah Hazwani Abd. Rahim and Zahurin Halim

Chapter 9
Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber
Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad

Chapter 10
Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete
Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 11
The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite
Norshahida Sarifuddin and Zuraida Ahmad

Chapter 12
Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites
Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar

Chapter 13
Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite
Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 14
Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete
Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 15
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1)
Md Abdul Maleque

Chapter 16
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2)
Md Abdul Maleque

Chapter 17
Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination
Md Abdul Maleque and Rezaul Karim

Chapter 18
Mechanical Properties of Wood Plastic Composites
Ooi Chong Jin and Shahjahan Mridha

Chapter 19
Properties of Wood Fiber Reinforced Polypropylene Composite
Shahjahan Mridha and Nafis Sarwar Islam
Chapter 20
The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete

Zuraida Ahmad and Nurizan Omar

Chapter 21
Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads

Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 22
Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite

Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 23
Impact Behavior of Carbon/Epoxy Composite in Moisture and Temperature environments

Shahjahan Mridha

Chapter 24
Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures

Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 25
An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading

Farrah Yusof and Zuraida Ahmad

Chapter 26
Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites

Teoh Swin Le, Kumaran A/L Samannamuthaliar and Zuraida Ahmad

Chapter 27
The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites

Noor Azlina Hassan, Norita Hassan, Sahrin Hj. Ahmad and Rozaidi Rasid

Chapter 28
Manganese Doped Hydroxyapatite Powder through Hydrothermal Method

Asep Sofwan Faturhman, Alqap, Iis Sopyan and Nuur Izzati Mazmaa
Chapter 29
Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder

Asep Sofwan Faturohman Algap, Nor Hidayu and Iis Sopyan

Chapter 30
Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite

Iskandar I. Yaacob

Chapter 31
Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite

Roslina Ismail and Iskandar I. Yaacob

Chapter 32
Investigation on the Effect of Water Immersion on Cotton Albumen Composite

Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 33
Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures

Zahurin Halim, Shahnor Basri and Mohd Ramli Ajir

Chapter 34
Finite Element Analysis of Interlaminar Stresses in Edge Delamination

Zahurin Halim and Meor Mohd. Adli Taib
Finite Element Analysis of Interlaminar Stresses in Edge Delamination

Zahurin Halim¹ and Meor Mohd Adli Taib²
¹,²Faculty of Engineering-International Islamic University Malaysia
✉️: zahureen@ium.edu.my; mcoradli@yahoo.com

Keywords: FEA, fibre reinforced laminates, delamination, interlaminar stresses.

Abstract: Edge delamination in fiber-reinforced composite laminates has been a significant structural reliability concern. This particular laminate failure mode is caused by the high interlaminar stresses concentrated near the free edges. Due to the complex fiber/matrix microstructure of laminates, an accurate evaluation of these stresses and determining their exact role in laminate failure has been difficult. This chapter aims to investigate the interlaminar stresses in edge delamination by modeling it using finite element analysis software (ANSYS).

Introduction

Fiber-reinforced laminates are one of the basic forms of composite materials. Laminates are typically manufactured using a number of pre-peg unidirectional plies bonded together into a layered structure. They are most effective in the form of thin plates or shells and are used in a wide variety of high-performance applications, such as military and aerospace structures [1]. The appeal of laminates, in addition to their superior strength-to-weight and stiffness-to-weight ratios, is in their ability to be custom-tailored to meet specific performance needs. The ply fiber orientation and ply stacking sequence in lamination allow the stiffness and strength properties to be designed directionally dependent in response to the applied load. This gives laminates a unique advantage over conventional materials [2].

Design and material parameters can cause laminates to fail in unusual modes. One major mode of failure is inter-ply debonding, or delamination. While laminates are primarily designed to withstand in-plane loads, high interlaminar stresses can develop in regions with abrupt changes in material and/or geometry, such as at free-edges, holes, cut-outs, etc. The interlaminar stresses in these regions are highly localized with steep gradients. As a result, delamination may form and propagate into a large crack. It is well known that a localized delamination can lead to severe structural weakening as well as reduce structure durability. For this reason, there have been many theoretical and experimental studies on the mechanics of delamination in composite laminates [3]. However, due to the complex nature of the delamination mechanisms, the problem continues to attract research interest.

Method

ANSYS is a comprehensive general-purpose finite element computer program that contains more than 100,000 lines of code. ANSYS is capable of performing static, dynamic, heat transfer, fluid flow, and electromagnetism analyses. ANSYS has multiple windows incorporating a graphical user interface (GUI), pull-down menus, dialog boxes, and tool bar.