ADVANCES IN MATERIALS ENGINEERING

Volume 2

Edited By:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Table of Content

Chapter 1
Amorphous Coating of Iron Nickel Alloy 1
Suryanto

Chapter 2
Characterization of Electroplated Nanocrystalline NiFe Alloy Films 7
Yusrini Marita and Iskandar I. Yaacob

Chapter 3
Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution 13
Suryanto

Chapter 4
Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation 19
Muh Rafiq Mirza Julaihi, Asep Sofwan Fatur Rahman Alqap and Iis Sopyan

Chapter 5
Dynamic Mechanical Analysis of Carbon Fibre Composites 25
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 6
Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles 31
Koay Mei Hwie and Iskandar I. Yaacob

Chapter 7
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ’ Precipitates 37
Roslina Ismail and Iskandar I. Yaacob

Chapter 8
Effect of Sintering Temperature on Protein Foaming-consolidation Porous Alumina-tricalcium Phosphate Composites 43
Ahmad Fadli and Iis Sopyan

Chapter 9
Electrical Property of ITO Thin Film Deposited by RF Magnetron Sputtering 49
Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana

Chapter 10
Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications 55
Souad. A. Mohamad, A. K. Arof

Chapter 11
Electrodeposited CdS / CdTe Solar Cells 61
Souad. A. Mohamad

Chapter 12
Fabrication of Biomass Pellet from Mesocarp Fiber 65
Zahurin Halim and Nurshazana Mohamad

Chapter 13
Fabrication of Kenaf Sandwich Panel 68
Siti Khadijah Abdul Rahman and Zahurin Halim
Chapter 14
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Drying Time 78
Fariza Abdul Rahman and Zuraida Ahmad

Chapter 15
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Sintering Temperature 84
Zuraida Ahmad and Fariza Abdul Rahman

Chapter 16
FTIR Analysis - Aluminium Hydroxide Treated with Silane Coupling Agent 89
Noorasikin Samat, Nor Suhaila Nor Saidi and Muhammad Saffuan Sahat

Chapter 17
Inorganic / Organic /Inorganic Double Junction Thin Film Solar Cells 92
Souad. A. Mohamad

Chapter 18
Investigation on The Effect of Ultra Violet on Cotton Albumen Composite 96
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 19
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent 100
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Natural Dye Coated Nanocrystalline TiO2 Electrode Films for DSSCs 106
Souad. A. Mohamad and Iraj Alaei

Chapter 21
Normal Deposition to Anomalous Deposition 109
Suryanto

Chapter 22
Polymer Clay Nanocomposites: Part II- Synthesis of Polymer Nanocomposites 115
Noor Azlina Hassan, Norita Hassan

Chapter 23
Production of Porous Calcium Phosphate Ceramics through Polymeric Sponge Method 120
Asep Sofwan Faturohman Alqap, Nur Ain Rakman, and Iis Sopyan

Chapter 24
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method 126
Asep Sofwan Faturohman Alqap, Iis Sopyan and Zuria Farhana Kushaili

Chapter 25
Stress Analysis of Backend Metallization 132
Iskandar I. Yaacob and Goh Chia Lan

Chapter 26
Study on Metal Removing from Alumina Ceramics 137
Agus Geter Edy Sutjipto and Muhyiddin Bin Budah@Udah
Chapter 27
Surface Quality of *Dipterocarpus* Spp under Tropical Climate Change: Effect of Pre-Weathering
Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films
Seoh Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition
Agus Geter Edy Sutjipto, Sugrib Kumar Shaia

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications
Souad. A. Mohamad
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition

Agus Geter Edy Sutjipto, Sugrib Kumar Shaha
Kulliyyah of Engineering – International Islamic University Malaysia
✉ : agus@iium.edu.my

Keywords: ITO, Magnetron sputtering, Diode sputtering, Triode sputtering

Abstract. ITO is tin doped indium oxide which can be used to produce transparent conductive film. The main objective of the experiment is to investigate the effect of power in depositing ITO thin film on glass substrate. In the present study, Indium Tin Oxide (ITO) films were deposited on glass substrates using magnetron sputtering system. With a constant gas flow rate and deposition time, sputtering was done by changing power. All the deposition had been done in room temperature. After deposition the surface of the film was characterized using scanning electron microscopy (SEM), and the electrical characteristics of the ITO thin film was measured using Low Resistivity Meter. The experiment shows that higher the powers better the properties in terms of resistivity or conductivity.

Introduction
Sputtering was discovered in 1852 when Grove observed metal deposits at the cathodes of a cold cathode glow discharge. Until 1908 it was generally believed that the deposits resulted from evaporation at hot spots on the cathodes. However, between 1908 and 1960, experiments with obliquely incident ions and sputtering of single crystals by ion beams tended to support a momentum transfer mechanism rather than evaporation.

Sputtering was used to coat mirrors as early as 1887, finding other applications such as coating fabrics and phonograph wax masters in the 1920s and 1930s. The subsequent important process improvements of radio frequency (rf) sputtering, allowing the direct deposition of insulators, and magnetron sputtering, which enables much higher deposition rates with less substrate damage, have evolved more recently. These two developments have allowed sputtering to compete effectively with other physical vapor deposition processes such as electron beam and thermal evaporation for the deposition of high quality metal, alloy, and simple organic compound coatings, and to establish its position as one of the more important thin film deposition techniques.

Indium Tin Oxide (ITO) film has been widely used as a transparent conductor due to its high transparency to visible light and its low electrical resistivity. Applications of ITO as a transparent conductor include transparent electrodes, antireflection coating, heat-reflecting mirrors, transparent electromagnetic shield coatings, display devices, and optoelectronic and photovoltaic devices [1-3]. A variety of techniques have been used for depositing ITO films. Among these deposition methods, reactive sputtering deposition is widely used for ITO film deposition. Desirable features of reactive sputtering employing alloy targets for practical uses are: a high deposition rate, accurate control of the film thickness, highly conducting and transparent films with good uniformity and excellent adhesion to the substrate. In general, a