ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
A Critical Review of Metal Matrix Composite Brake Rotor
Md Abdul Maleque
1

Chapter 2
Technology of Moulding for Composite Auto Brake Rotor
Md Abdul Maleque
7

Chapter 3
Fabrication of Nickel Aluminide (Ni$_3$Al) by Hot Isostatic Pressing (HIP)
Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob
13

Chapter 4
Investigation of Mechanically Alloyed Nd-Fe-B Powder
I.I. Yaacob and H.K. Jun
17

Chapter 5
Synthesis And Characterization Of Nanocrystalline Ni$_3$Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis
R. Ismail and I.I. Yaacob
23

Chapter 6
The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites
Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria
29

Chapter 7
Fatigue Fracture Mechanism of PVC/CaCO$_3$ nanocomposite
Noorasikin Samat, Alan Whittle and Mark Hoffman
34

Chapter 8
Mechanical Behaviour of Eco Core Composite Sandwich Structure
Norhasnidawani Johari, Safiyah Hazwani Abd. Rahim and Zahurin Halim
40

Chapter 9
Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber
Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad
45

Chapter 10
Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete
49
Chapter 11
The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of
Cement Composite
Norshahida Sariuddin and Zuraida Ahmad

Chapter 12
Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites
Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar

Chapter 13
Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite
Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 14
Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete
Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 15
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1)
Md Abdul Maleque

Chapter 16
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2)
Md Abdul Maleque

Chapter 17
Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination
Md Abdul Maleque and Rezaul Karim

Chapter 18
Mechanical Properties of Wood Plastic Composites
Ooi Chong Jin and Shahjahan Mridha

Chapter 19
Properties of Wood Fiber Reinforced Polypropylene Composite
Shahjahan Mridha and Nafis Sarwar Islam
Chapter 20
The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete

Zuraida Ahmad and Nurizan Omar

Chapter 21
Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads

Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 22
Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite

Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 23
Impact Behavior of Carbon/Epoxy Composite in Moisture and Temperature environments

Shahjahan Mridha

Chapter 24
Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures

Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 25
An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading

Farrah Yusoff and Zuraida Ahmad

Chapter 26
Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites

Teoh Swin Le, Kumaran A/L Samannamuthialiar and Zuraida Ahmad

Chapter 27
The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites

Noor Azlina Hassan, Norita Hassan, Sahrin Hj. Ahmad and Rozaidi Rasid

Chapter 28
Manganese Doped Hydroxyapatite Powder through Hydrothermal Method

Asep Sofwan Fathorhman, Aliqap, Iis Sopyan and Nur Izzati Maznai

viii
Chapter 29
Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder

Asep Sofwan Faturohman Alqap, Nor Hidayu and Iis Sopyan

Chapter 30
Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite

Iskandar I. Yaacob

Chapter 31
Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite

Roslina Ismail and Iskandar I. Yaacob

Chapter 32
Investigation on the Effect of Water Immersion on Cotton Albumen Composite

Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 33
Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures

Zahurin Halim, Shahnor Basri and Mohd Ramli Ajir

Chapter 34
Finite Element Analysis of Interlaminar Stresses in Edge Delamination

Zahurin Halim and Meer Mohd. Adli Taib
Chapter 026

Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites

Teoh Swin Le¹, Kumaran A/L Samannamuthaliar² and Zuraida Ahmad³

¹,²,³ Hussiyah of Engineering – International Islamic University Malaysia
✉: zuraida@iium.edu.my

Keywords: Concrete, composite, albumen, empty fruit bunch, fibre.

Abstract: This study concerns on fabricating of composites cotton reinforced egg albumen mixed with clay particles used as filler. Two types of clay particles were used in this research which is montmorillonite and ball clay. Composites were prepared by dispersing clay into albumen matrix with various weight percentages varying from 0 wt% to 10 wt%, prior to the wetting of cotton layers through hands lay-up technique. Mechanical, thermal and morphology study of composites were performed by using fracture test, tensile test and Scanning electron Microscopy (SEM) respectively. A significant increase has been observed in the mechanical properties such as tensile strength and impact strength with the addition of the clay particles.

Introduction

The developments of the biodegradable composite have inspired wide ranging research and polymer/clay composites is one of the latest revolutionary steps of the composite technology. These biocomposites which composed of plant fibers and biodegradable polymers have become very attractive materials; natural fibers such as cotton were in fact use as thermoplastic reinforcement [1]. Preparations of blends or composites using inorganic or natural fibers are among the routes to improve some of the properties of biodegradable composite. Nano-clay is normally added as filler to improve the properties of the composite.

Clay minerals are aluminum silicates of a layered type classified as phyllosilicates. Montmorillonite is among the most commonly used layered silicates because it is environmentally friendly and readily available in large quantities with relatively low cost. Montmorillonite crystal lattice consists of 1 nm thin layers with an octahedral alumina sheet sandwiched between two tetrahedral silica sheets. The aspect ratio is about 100. The stacking of the platelets leads to a Van der Waals gap or gallery between the layers. The layers are negatively charged and this charge is balanced by alkali cations such as Na⁺, Li⁺ or Ca²⁺ in the gallery between the aluminosilicate layers [2]. The improvement in the albumen composite properties obtained when the clay is exfoliated and the major problem in preparing these composites is to separate the layers of the clay because they are initially agglomerated. The aim of this work is to study the mechanical properties of the cotton albumen incorporated with clay with different percentages [3].