ADVANCES IN COMPOSITE MATERIALS Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # ADVANCES IN COMPOSITE MATERIALS Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim ### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Iskandar Idris Yaacob, Md Abdul Maleque & Zahurin Halim: Advances in Composite Materials. ISBN: 978-967-418-231-1 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Content** | Chapter 1 | 1 | |--|----| | A Critical Review of Metal Matrix Composite Brake Rotor Md Abdul Maleque | | | Chapter 2 Technology of Moulding for Composite Auto Brake Rotor | 7 | | Md Abdul Maleque Chapter 3 Fabrication of Nickel Aluminide (Ni ₃ Al) by Hot Isostatic Pressing (HIP) Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob | 13 | | Chapter4 Investigation of Mechanically Alloyed Nd-Fe-B Powder | 17 | | I.I. Yacoob and H.K. Jun | | | Chapter 5 Synthesis And Characterization Of Nanocrystalline Ni ₃ Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis **R.Ismail and 1.1. Yaacob*** | 23 | | Chapter 6 The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria | 29 | | Chapter 7 Fatigue Fracture Mechanism of PVC/CaCO ₃ nanocomposite | 34 | | Noorasikin Samat, Alan Whittle and Mark Hoffman | | | Chapter 8 Mechanical Behaviour of Eco Core Composite Sandwich Structure Norhasnidawani Johari Safiyah Hazwani Abd. Rahim and Zahurin Halim | 40 | | Chapter 9 Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber | 45 | | Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad | | | Chapter 10 Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete | 49 | | Afigah Omar, | Nur | Humai | rah A. | Razak | and | Zuraida | Ahmad | |--------------|-----|--------------------|--------|---------|-----|-------------|---------| | zijigun Omu, | | A X C+ 17 + C+ 1 + | | 1 (() | | 2017 001010 | 11///// | | Chapter 11 The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite | 55 | |---|-----| | Norshahida Sarifuddin and Zuraida Ahmad | | | Chapter 12 Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites | 62 | | Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar | | | Chapter 13 Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite | 68 | | Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad | | | Chapter 14 Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete | 74 | | Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad | | | Chapter 15 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1) Md Abdul Maleque | 80 | | Chapter 16 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2) | 86 | | Md Abdul Maleque Chapter 17 Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination Md Abdul Maleque and Rezaul Karim | 90 | | Chapter 18 Mechanical Properties of Wood Plastic Composites | 96 | | Ooi Chong Jin and Shahjahan Mridha | | | Chapter 19 Properties of Wood Fiber Reinforced Polypropylene Composite Shahjahan Mridha and Nafis Sarwar Islam | 101 | | Chapter 20 The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete | 108 | |---|-----| | Zuraida Ahmad and Nurizan Omar | | | Chapter 21 Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads Ahmed Nazrin Md Idriss and Shahjahan Mridha | 114 | | Chapter 22 Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite | 119 | | Ahmed Nazrin Md Idriss and Shahjahan Mridha | | | Chapter 23 Impact Behavior of Carbon/ Epoxy Composite in Moisture and Temperature environments | 125 | | Shahjahan Mridha | | | Chapter 24 Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures | 132 | | Ahmed Nazrin Md Idriss and Shahjahan Mridha | | | Chapter 25 An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading | 138 | | Farrah Yussof and Zuraida Ahmad | | | Chapter 26 Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites | 144 | | Teoh Swin Le, Kumaran A/L Samannamuthaliar and Zuraida Ahmad | | | Chapter 27 The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites | 150 | | Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 28 Manganese Doped Hydroxyapatite Powder through Hydrothermal Method Asep Sofwan Faturohman, Alqap, Iis Sopyan and Nuur Izzati Mazmaa | 155 | | Chapter 29 Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder Agen Softwar Entwerkman Alaga New Hidron and Ita Someon | 161 | |---|-----| | Asep Sofwan Faturohman Alqap, Nor Hidayu and Iis Sopyan | | | Chapter 30 Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite Iskandar I. Yaacob | 167 | | Chapter 31 Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite | 172 | | Roslina Ismail and Iskandar I. Yaacob | | | Chapter 32 Investigation on the Effect of Water Immersion on Cotton Albumen Composite | 178 | | Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof | | | Chapter 33 Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures | 182 | | Zahurin Halim , Shahnor Basri and Mohd Ramli Ajir | | | Chapter 34 Finite Element Analysis of Interlaminar Stresses in Edge Delamination | 190 | | Zahurin Halim and Meor Mohd. Adli Taib | | ## Properties of Wood Fiber Reinforced Polypropylene Composites Shahjahan Mridha¹ and Nafis Sarwar Islam² 1. ²Faculty of Engineering - International Islamic University Malaysia :: shahjahan@iium.edu.my Keywords: Wood plastic composite, Coupling agent, Strength, Accelerated marine test Abstract: Wood fiber reinforced polypropylene composite samples have been fabricated using 50 wt% fiber of 250 μ m and 100 μ m sizes by extrusion and injection molding method. Chemically treated fibers with maleic anhydride polypropylene (MAH-PP) coupling agent were equally used to fabricate composite samples. The effect of the coupling agent on the characteristics of the composites is investigated by assessing their properties in terms of tensile strength, hardness and water absorption. As water absorption has a harmful effect on the mechanical properties of the samples accelerated marine test was conducted to study the water absorption capabilities. The water absorption gives significantly reduction in sample processed with the chemically treated fibers. It is presumed that the coupling agent creates a surface layer on wood fibers which diminishes water permeability in to the fibers. However the 100 μ m sized fiber filled samples shows higher water absorption compared to those samples fabricated with 250 μ m size fibers. ### Introduction Natural fibers are promising reinforcements for thermoplastic composite due to their low weight and cost. Moreover the natural fibers are obtained from post industrial sources. Since price for plastic has risen sharply over the past few years, adding a natural fiber to plastic provides cost reduction and in some cases increases performance of fiber filled plastic products. For this reason the scopes of fiber reinforced composites with natural fillers are increasing compared to inorganic fiber [1]. The addition of 10 parts per hundred by weight of oil palm wood fiber in the glass fiber reinforced composite is reported to reduce weight by 10%, without changing the specific energy absorption and impact strength [2]. It has been suggested that fiber orientation and moisture content of fiber have an effect on the mechanical properties of the rubber wood fiber filled polypropylene composites [3]. The fibers are shown to be in close proximity with each other in the samples, preventing the plastic matrix to properly encapsulate them which generates larger voids in the composite system and thus weakening the wood plastic composite. The major usage of plastic composites is in transportation followed by the combined usage in marine and corrosive environment [1]. However, corrosion and marine environment stability of wood plastic composite has not been thoroughly investigated. Manufacturers mostly rely upon some limited laboratory tests whose methodologies are useful for simulations but not to predict the service properties. Stark [4] investigated polymer composites filled with 20 and 40% wood fiber at varying relative humidity of 30, 65 and 90% respectively and observed that the 20% wood fiber composite absorbed just above 1.4% moisture. Whereas 9.0% moisture absorption was obtained with 40% wood fiber reinforced composite. Bledzki and Faruk [5] found that the wood fiber in plastic composite can easily allow the absorption of water. However, in case of MAH-PP treated fiber sample, water absorption decreased by 75% due to the encapsulation of the fiber with MAH-PP. They suggested that during mixing, MAH-PP reacts with the hydroxyl group of the wood fibers to form covalent bond which is more resistant to water penetration. The effect of MAH-PP coupling agent on hardness and water absorption of natural fiber filled plastic composites has been studied by Patil et al [6]. They observed that MAH-PP treated fibers composite samples swelled less water and the sample was twice harder than that with untreated fibers.