ADVANCES IN MATERIALS ENGINEERING Volume 2 vorume 2 Edited By: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # ADVANCES IN MATERIALS ENGINEERING VOLUME 2 Edited By: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim ### Published by: **IIUM Press** International Islamic University Malaysia First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying. recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Md Abdul Maleque, Iskandar Idris Yaacob & Zahurin Halim: Advances in Materials Engineering ISBN: 978-967-418-168-0 Member of Majlis Penerbitan Ilmiah Malaysia -- MAPIM (Malaysian Scholarly Publishing Council) PRINTED BY: HUM PRINTING SDN.BHD. NO. 1, JALAN INDUSTRI BATU CAVES 1/3 TAMAN PERINDUSTRIAN BATU CAVES BATU CAVES CENTRE POINT 68100 BATU CAVES SELANGOR DARUL EHSAN TEL: +603-6188 1542 / 44 / 45 FAX: +603-6188 1543 EMAIL: iiumprinting@yahoo.com # **Table of Content** | Chapter 1 Amorphous Coating of Iron Nickel Alloy 1 | | | |---|--|--| | Suryanto | | | | Chapter2 Characterization of Electroplated Nanocrystalline NiFe Alloy Films 7 | | | | Yusrini Marita and Iskandar I. Yaacob | | | | Chapter 3 Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution 13 | | | | Suryanto | | | | Chapter 4 Development of Carbon Doped TiO ₂ Photocatalyst for Pigment Degradation 19 | | | | Muh Rafiq Mirza Julaihi, Asep Sofwan Faturohman Alqap and Iis Sopyan | | | | Chapter 5 | | | | Dynamic Mechanical Analysis of Carbon Fibre Composites Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | | Chapter 6 | | | | Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles 31 | | | | Koay Mei Hyie and Iskandar I. Yaacob | | | | Chapter 7 | | | | Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the | | | | Formation of γ' Precipitates 37 | | | | Roslina Ismail and Iskandar I. Yaacob | | | | Chapter 8 Effect of Sintering Temperature on Protein Foaming-consolidation 43 | | | | Porous Alumina-tricalcium Phosphate Composites | | | | Ahmad Fadli and Iis Sopyan | | | | Chapter 9 | | | | Electrical Property of ITO Thin Film Deposited by Rf Magnetron Sputtering Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana | | | | Chapter 10 | | | | Electrochemical Study of Zinc Sclenide Thin Films Prepared for Photovoltaic Applications 55 Souad. A. Mohamad, A. K. Arof | | | | Chapter 11 | | | | Electrodeposited CdS / CdTe Solar Cells 61 | | | | Souad. A. Mohamad | | | | Chapter 12 | | | | Fabrication of Biomass Pellet from Mesocarp Fiber 7 Sharin Helim and Nurshazara Mahamad | | | | Zahurin Halim and Nurshazana Mohamad Chapter 13 | | | | Fabrication of Kenaf Sandwich Panel 68 | | | | Siti Khadijah Ahdul Rahman and Zahurin Halim | | | | | Zuraida Ahmad and Fariza Abdul Ra | ahman | |---|--|--------------------------------------| | Chapter 16 | | | | FTIR Analysis - Aluminium Hydroxide Treated with | 1 Silane Coupling Agent | 89 | | Noorasikin Samat, Nor Suhail | a Nor Saidi and Muhammad Saffuan | Sahat | | Chapter 17 | | | | Inorganic / Organic /Inorganic Double Junction Thin | r Film Solar Cells | 92 | | | Souad. A. Mol | namad | | Chapter 18 | | | | Investigation on The Effect of Ultra Violet on Cotto | n Albumen Composite | 96 | | Zahurin Halir | n, Zuraida Ahmad and Fauziah Md | Yusoi | | Chapter 19 | | | | Measurement of Oxygen Permeability in Bulk Alloy Constituent | s by Internal Oxidation of Dilute | 100 | | | Mohd Hanafi Bin Ani and Raihan O | thman | | Chapter 20 | violid Hanan Din Am and Kaman O | шша | | Natural Dye Coated Nanocrystalline Tio2 Electrode | Films for DSSCs | 106 | | Natural Dyc Coaled Nanocrystannic 1102 Electrode | Souad. A. Mohamad and Iraj | | | Chanton 21 | Souad, A. Mohamad and haj | Alaci | | Chapter 21 | | 109 | | Normal Deposition to Anomalous Deposition | C., | | | Cha-tuu 22 | Su | ryanto | | Chapter 22 | CD-1 | 115 | | Polymer Clay Nanocomposites: Part II- Synthesis of | Noor Azlina Hassan, Norita F | 115
Tassar | | Chapter 23 | | | | Production of Porous Calcium Phosphate Ceramics | through Polymeric Sponge Method | 120 | | Asep Sofwan Faturohma | n Alqap, Nur Ain Rakman, and Iis S | opyan | | Chapter 24 | | | | Silicone Doped Calcium Phosphate Powder Synthes Asen Sofwan Faturohman Ale | ized via Hydrothermal Method
jap, Iis Sopyan and Zuria Farhana Ki | 126
ushail | | Chapter 25 | jap, no sopjan ana zana i amana in | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Stress Analysis of Backend Metallization | | 132 | | Stress That years of Buckeria Metallization | Iskandar I. Yaacob and Goh Ch | | | Chapter 26 | iskandar i. Taacoo and Gon Cil | ia Dal | | Study on Metal Removing from Alumina Ceramics | | 137 | | <u>-</u> | Sutjipto and Muhyiddin Bin Budah@ | | | Agus Octor Eury | Jagupio ana irianyiaani Din Dudan(e | $\nu_i \cup uat$ | 78 84 Fariza Abdul Rahman and Zuraida Ahmad Foam Impregnation Method for Artificial Bone Graft Application Foam Impregnation Method for Artificial Bone Graft Application Chapter 14 Chapter 15 : Study on the Effect of Drying Time : Study on the Effect of Sintering Temperature | Chapter 27 Surface Quality of Dipterocarpus Spp under Tropical Climate Change: Effect of Pre-Weathering 146 Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed | |---| | Chapter 28 | | Surface Topography of Sulphuric Treated Carbon Fibre 151 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | Chapter 29 | | Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films 157 | | Seoh Hian Teh and Iskandar I. Yaacob | | Chapter 30 | | Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions 164 | | Iskandar I. Yaacob | | Chapter 31 | | The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC 170 | | Noorasikin Samat, Alan Whittle and Mark Hoffman | | Chapter 32 | | The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC 175 | | Noorasikin Samat, Alan Whittle and Mark Hoffman | | Chapter 33 | | Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition 180 | | Agus Geter Edy Sutjipto, Sugrib Kumar Shaha | | Chapter 34 | | X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized 186 | | Zirconia Thin Film in Aqueous Acid Hydrofluoric | | Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita | | Chapter 35 | 194 Souad. A. Mohamad ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications ## Investigation on the Effect of Ultra Violet on Cotton Albumen Composite Zahurin Halim¹, Zuraida Ahmad² and Fauziah Md Yusof³ 1, 2. Faculty of Engineering – International Islamic University Malaysia 3. Faculty of Mechanical Engineering- Universiti Teknologi MARA Malaysia 2. zahureen@iium.edu.my, zuraidaa@iium.edu.my, myfauziah@yahoo.com Keywords: Natural fiber, Composite, Ultra violet, Cotton, Albumen, Biodegradable. **Abstract.** This chapter studied the effect of ultra violet on cotton albumen composite (CAC). The cotton albumen composites were fabricated by hands lay-up technique with 10 w/w % of fiber content and cured for 14 days at room temperature. The samples were then exposed to ultra violet radiation from 5 days up to 40 days. The increasing of impact strength was observed after 5 days up to 10 days ultra violet exposure followed by decrement of impact strength after 15 days up to 40 days. Nevertheless, FTIR spectroscopy showed no difference in FTIR spectra of cotton albumen composite after ultra violet radiation exposure signifying the resistance to chemical reaction in molecular network up to 40 days. ### Introduction Ecological concerns in issues of sustainability, recyclability, and environmental safety in 1990s resulted in renewed interest in natural fiber composites. Two principal drivers have contributed to this surge in interest in natural fiber composites which are environment and cost. In fact, increasing of the understanding on correlations between structures and properties of new materials such as biodegradable composites seems to be greater driving force to the researches and applications of the new composites. Cotton used in this research is one of the most recognized lignocellulosic fibers used in several applications varying from common fabrics to composites. It is reported that a cotton stalk fibers/gypsum composite was proposed as building material due to its low density, good thermal and acoustic insulation, and a high strength to weight ratio. Similarly the several researchers have reported the performance, physical, mechanical and thermal properties etc. of cotton fibers reinforced polymer matrix composite. For example, an addition of 27.5 % of cotton in unsaturated polyester resin increased the impact strength from 61 to 971 Nm/s² per unit width, flexural strength from 101.8 to 142 MPa, modulus of elasticity at bending from 2.4 to 4.2 GPa [1]. Albumen used as the matrix in this research is the white egg. It consists mainly of about 10% proteins dissolved in water. In ancient ages, egg, yolk and white egg were reported to be used as binder in mud clay bricks, wall plaster and even Egyptian tomb coating by Egyptian, Roman, Indian, Chinese and others ancient people. Some of those ancient buildings and products are still not ruin showed their strength and toughness properties. As we know, ancient people directly utilized all the natural resources around them. There are few current research works using albumen as the matrix in composite. The usage of albumen as the non food product has been started at early 18th's. It was reported that