Biotechnologies towards Sustainable Development in Malaysia

Zarina Zainuddin

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Biotechnologies towards Sustainable Development in Malaysia

Zarina Zainuddin

IIUM Press
Table of Contents

Chapter 1 Bioethics and biotechnology: A holistic approach in Islamic perspectives
Ahmed Jalal Khan Chowdhury, Zaima Azira Zainal Abidin, Zarina Zainuddin and Suzannah Abdul Rahman

Chapter 2 Malaysia's Sea Cucumber (Echinodermata: Holothuroidea) Database
Kamarul Rahim Kamarudin

Chapter 3 Diversity and Exploitation of Sea Cucumbers in Malaysia and Its Neighbouring Countries
Kamarul Rahim Kamarudin

Chapter 4 Holothuria (Mertensiosthuria) leucospilota (Brandt, 1835) in the Marine Environment of Malaysia
Kamarul Rahim Kamarudin

Chapter 5 Genetic manipulation for better bioremediation processes
Noor Faizul Hadry Nordin

Chapter 6 Microbial bioremediation and sustainable development
Noor Faizul Hadry Nordin

Chapter 7 Heavy metal uptakes by plants
Phang Ing Chia

Chapter 8 Mechanisms of heavy metal tolerance in plants (I) – Avoidance mechanisms
Phang Ing Chia

Chapter 9 Mechanisms of heavy metal tolerance in plants (I) – Tolerance mechanisms
Phang Ing Chia

Chapter 10 Identifying catalytic residues for peptidases: *in silico* perspective
Noraslinda Muhamad Bunnori

Chapter 11 Important considerations in qRT-PCR
Phang Ing Chia
Chapter 12 Molecular approach of macroinvertebrates in tropical wetland, Lake Bera, Malaysia: Towards the assessment of ecosystem health
Nurhidayati Abdul Aziz, Ahmed Jalal Khan Chowdhury, Kamarul Rahim Kamarudin, Mohd Azmi Ambak and Najiah Musa

Chapter 13 Probiotic for sustainability protein source in Malaysia
Tengku Haziyamin Tengku Abdul Hamid

Chapter 14 Bacteriocin as safe antimicrobial agent
Tengku Haziyamin Tengku Abdul Hamid

Chapter 15 Review on marine actinomycetes
Zaima Azira Zainal Abidin

Chapter 16 Biotechnology potential tropical mangrove plant with special emphasis on Avicennia alba in Tanjung Lumpur, Pahang Malaysia
Ahmed Jalal Khan Chowdhury, Deny Susanti, and Nur Sazwi Binti Nordin

Chapter 17 Studies on agronomy, breeding and genetics of Stevia rebaudiana (Bertoni) in Malaysia
Raji Akintunde Abdullahi and Mohamad bin Osman

Chapter 18 Identification and characterization of Burkholderia pseudomallei serine and metallopeptidases
Noraslinda Muhamad Bunnori

Chapter 19 Analysis of xylene degradation by bacteria isolated from petroleum contaminated sites
Noor Faizul Hadri Nordin and Marni Farhani Mansor

Chapter 20 Bioadsorption of heavy metals from synthetic waste water by tropical rambutan seed
Ahmed Jalal Khan Chowdhury, Abul Bashar Mohammed Helal Uddin, Mohd Sufian Mohamad Shukri, Kamaruzzaman Yunus

Chapter 21 Chitin and chitosan from fresh water fish tilapia (Oreochromis niloticus) scale
Ahmed Jalal Khan Chowdhury, Nor Hafizah Zakaria, Tengku Haziyamin Tengku Abdul Hamid and Deny Susanti

Chapter 22 Chitin and chitosan from potential shrimps and crabs of Malaysia
Ahmed Jalal Khan Chowdhury, Suffi Nurul Husna, Deny Susanti, Akbar John and Kamaruzzaman Yunus

xii
Chapter 23 Extraction of chitin and chitosan from Malaysian cephalopods “Sotong mengaban” (Sepioteuthis lessoniana) and “Sotong jarum” (Loligo vulgaris)
Ahmed Jalal Khan Chowdhury, Mohd Hazman Mohd Salleh, Deny Susanti, Akbar John and Jamaluddin Daud

Chapter 24 In Planta Agrobacterium tumefaciens transformation of MR 219 rice
Zaima Azira Zainal Abidin and Rabiah Abdul Wahab

Chapter 25 Optimisation of transformation system for chilli embryo (Capsicum annuum variety Kulai) using particle bombardment
Zarina Zainuddin and Rozilawati Mohamad Achil

Chapter 26 Screening of mangrove plants for gram negative antibacterial activity
Zarina Zainuddin and ‘Izzati Akmal Hasan

Chapter 27 Antibacterial activities of green and ripens banana peel (Musa, AA cv. Sucrrier) in Malaysia
Ahmed Jalal Khan Chowdhury, Dina Fuad, Md. Tariqur Rahman and Akbar John

Chapter 28 Agglutinin and antibacterial activities in oyster, Chama pacifica plasma
Najiah Musa, Arief Izzaery Zamani, Ahmed Jalal Khan Chowdhury and Muhamad Hazwan Mat Tar, Nadirah Musa

Chapter 29 The effect of cooking methods on meat samples using PCR-RFLP analysis
Zaima Azira Zainal Abidin and Haryati Ithnin
Chapter 21

Chitin and chitosan from fresh water fish tilapia (Oreochromis niloticus) scale

*Ahmed Jalal Khan Chowdhury, Nor Hafizah Zakaria, Tengku Haziyamin Tengku Abdul Hamid and Deny Susanti

*Corresponding author: jkchowdhury@ium.edu.my

Introduction

Chitin is the second most abundant natural polymer in nature after cellulose, which consists of 2-acetamido 2-deoxy-β-D-glucose through a β (1 →4) linkage. Chitin is unusual because it is a "natural polymer," or a combination of elements that exists naturally on earth. Usually, polymers are man-made. As a point different from other abundant polysaccharides, chitin contains nitrogen in addition to carbon, hydrogen and oxygen. It is sometimes considered to be a byproduct of cellulose, because the two are very molecularly similar. Cellulose contains a hydroxyl group and chitin contains acetamide. Like cellulose, it functions as structural polysaccharides. Chitin and chitosan are only slightly different on a molecular level. Chitosan contains an amine group, or a group without carbons bonded to oxygen, whereas chitin contains an amide group, where this is the case. Chemically, chitin is known as poly-N-acetylg glucosamine and in accordance to its proposed name, the difference between chitin and chitosan is that the degree of deacetylation in chitin is very little compared to chitosan (Muzzarelli, 1973).