

# ADVANCES IN COMPOSITE MATERIALS







Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim



**IIUM PRESS** 

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

# ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim



### Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Iskandar Idris Yaacob, Md Abdul Maleque & Zahurin Halim: Advances in Composite Materials.

ISBN: 978-967-418-231-1

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

# **Table of Content**

| Chapter 1                                                                                                                                                                          | 1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A Critical Review of Metal Matrix Composite Brake Rotor  Md Abdul Maleque                                                                                                          |    |
| Chapter 2 Technology of Moulding for Composite Auto Brake Rotor                                                                                                                    | 7  |
| Md Abdul Maleque Chapter 3 Fabrication of Nickel Aluminide (Ni <sub>3</sub> Al) by Hot Isostatic Pressing (HIP) Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob                          | 13 |
| Chapter4 Investigation of Mechanically Alloyed Nd-Fe-B Powder                                                                                                                      | 17 |
| I.I. Yacoob and H.K. Jun                                                                                                                                                           |    |
| Chapter 5 Synthesis And Characterization Of Nanocrystalline Ni <sub>3</sub> Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis  **R.Ismail and 1.1. Yaacob*** | 23 |
| Chapter 6 The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria             | 29 |
| Chapter 7 Fatigue Fracture Mechanism of PVC/CaCO <sub>3</sub> nanocomposite                                                                                                        | 34 |
| Noorasikin Samat, Alan Whittle and Mark Hoffman                                                                                                                                    |    |
| Chapter 8 Mechanical Behaviour of Eco Core Composite Sandwich Structure Norhasnidawani Johari Safiyah Hazwani Abd. Rahim and Zahurin Halim                                         | 40 |
| Chapter 9 Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber                                                                      | 45 |
| Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad                                                                                                                              |    |
| Chapter 10 Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete                                                                                  | 49 |

| Afigah Omar, | Nur | Humai              | rah A. | Razak   | and | Zuraida     | Ahmad   |
|--------------|-----|--------------------|--------|---------|-----|-------------|---------|
| zijigun Omu, |     | A X C+ 17 + C+ 1 + |        | 1 ( ( ) |     | 2017 001010 | 11///// |

| Chapter 11 The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite                  | 55  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| Norshahida Sarifuddin and Zuraida Ahmad                                                                                                 |     |
| Chapter 12 Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites                                          | 62  |
| Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar                                                                            |     |
| Chapter 13 Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite                                | 68  |
| Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad                                                                             |     |
| Chapter 14 Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete                                                       | 74  |
| Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad                                                                                    |     |
| Chapter 15 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1)  Md Abdul Maleque                                      | 80  |
| Chapter 16 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2)                                                        | 86  |
| Md Abdul Maleque Chapter 17 Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination Md Abdul Maleque and Rezaul Karim | 90  |
| Chapter 18 Mechanical Properties of Wood Plastic Composites                                                                             | 96  |
| Ooi Chong Jin and Shahjahan Mridha                                                                                                      |     |
| Chapter 19 Properties of Wood Fiber Reinforced Polypropylene Composite Shahjahan Mridha and Nafis Sarwar Islam                          | 101 |

| Chapter 20 The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete                          | 108 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Zuraida Ahmad and Nurizan Omar                                                                                                                        |     |
| Chapter 21 Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads Ahmed Nazrin Md Idriss and Shahjahan Mridha       | 114 |
| Chapter 22 Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite                                       | 119 |
| Ahmed Nazrin Md Idriss and Shahjahan Mridha                                                                                                           |     |
| Chapter 23 Impact Behavior of Carbon/ Epoxy Composite in Moisture and Temperature environments                                                        | 125 |
| Shahjahan Mridha                                                                                                                                      |     |
| Chapter 24 Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures                                        | 132 |
| Ahmed Nazrin Md Idriss and Shahjahan Mridha                                                                                                           |     |
| Chapter 25 An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading                                                              | 138 |
| Farrah Yussof and Zuraida Ahmad                                                                                                                       |     |
| Chapter 26 Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites                                                                   | 144 |
| Teoh Swin Le, Kumaran A/L Samannamuthaliar and Zuraida Ahmad                                                                                          |     |
| Chapter 27 The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites | 150 |
| Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid                                                                                 |     |
| Chapter 28 Manganese Doped Hydroxyapatite Powder through Hydrothermal Method  Asep Sofwan Faturohman, Alqap, Iis Sopyan and Nuur Izzati Mazmaa        | 155 |

| Chapter 29 Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder  Agen Softwar Entwerkman Alaga New Hidron and Ita Someon | 161 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Asep Sofwan Faturohman Alqap, Nor Hidayu and Iis Sopyan                                                                                                       |     |
| Chapter 30 Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite  Iskandar I. Yaacob                                                    | 167 |
| Chapter 31 Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite                                                                                | 172 |
| Roslina Ismail and Iskandar I. Yaacob                                                                                                                         |     |
| Chapter 32 Investigation on the Effect of Water Immersion on Cotton Albumen Composite                                                                         | 178 |
| Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof                                                                                                             |     |
| Chapter 33 Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures                                                         | 182 |
| Zahurin Halim , Shahnor Basri and Mohd Ramli Ajir                                                                                                             |     |
| Chapter 34 Finite Element Analysis of Interlaminar Stresses in Edge Delamination                                                                              | 190 |
| Zahurin Halim and Meor Mohd. Adli Taib                                                                                                                        |     |

## Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete

Afiqah Omar<sup>1</sup> Nur Humairah A. Razak<sup>2</sup> and Zuraida Ahmad<sup>3</sup>
<sup>1,2,3</sup>Khulliyyah of Engineering – International Islamic University Malaysia

i. zuraidaa@iium.edu.my

Keywords: Concrete, composite, albumen, empty fruit bunch, fibre.

**Abstract:** The main aim of this chapter is to produce a lightweight composite concrete from oil palm empty fruit bunch (OPEFB) fibres with the intention to substitute the ordinary heavy and brittle concrete. The composite concrete contained OPEFB fibres as reinforcement whilst albumen as a binder. The composite mixture was casted and cured for 28 days before being tested for psychical tests, namely, density, moisture content and water absorption as well as morphological analysis. The volume fraction of fibre varies between 0, 1, 2, 3, 4, 5 and 6 wt. % while egg albumen maintains its optimum volume fraction at 65 wt. %. The mixture was in accordance with composite 'Rule of Mixture'. The OPEFB composite concrete generated low density cement composite with the lowest density value of 0.90 g/cm<sup>3</sup> at 5 wt.% fibre fraction with 3.46% and 15.18% for moisture content and water absorption respectively.

### Introduction

The usage of natural fibre as reinforcement in the concrete somehow assists the world in reducing the number of biomass waste, open burning as well as cost in producing concrete. For example, despite the economic benefits that Malaysia obtains as one of world largest palm oil exporter [1-2], the industry produces tons of biomass products. Waste produces by oil palm industry includes palm shell, fibre, empty fruit bunch (EFB), trunk and frond [2]. In fact, OPEFB fibre (*Elaeis guineensis Jacq*) [3] can be utilized as reinforcement in cement based application with encouraging results [4]. It is as an alternative effort for the rapidly expanding construction industry to reduce concrete production cost with enhanced concrete performance.

Density is one of the important parameters which can control many physical properties in cement composite and it is mainly controlled by the amount and density of fibres [5]. Increment in moisture content and water absorption of the natural fibre leads to higher affect in the mechanical and physical properties of composite [6]. It results in poor wettability with matrix which leads to a weak interfacial bonding between the fibre and the matrix.

On the other hand, albumen can act as a binder, encapsulating the fiber and produces networking protein that bind fiber and cement particle thus reduce the moisture and water absorption [7]. In this chapter, the report is only focused on the development of the OPEFB albumen composites, coupled with the study of their physical properties as density, moisture