ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
A Critical Review of Metal Matrix Composite Brake Rotor
Md Abdul Maleque
Page 1

Chapter 2
Technology of Moulding for Composite Auto Brake Rotor
Md Abdul Maleque
Page 7

Chapter 3
Fabrication of Nickel Aluminide (Ni3Al) by Hot Isostatic Pressing (HIP)
Fatizal Abu Zarim, Iraj Alaei, I.I. Yaacob
Page 13

Chapter 4
Investigation of Mechanically Alloyed Nd-Fe-B Powder
I.I. Yacoob and H.K. Jun
Page 17

Chapter 5
Synthesis and Characterization Of Nanocrystalline Ni3Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis
R. Ismail and I.I. Yaacob
Page 23

Chapter 6
The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites
Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria
Page 29

Chapter 7
Fatigue Fracture Mechanism of PVC/CaCO3 nanocomposite
Noorasikin Samat, Alan Whittle and Mark Hoffman
Page 34

Chapter 8
Mechanical Behaviour of Eco Core Composite Sandwich Structure
Norhasnidawani Johari, Safiyah Hazwani Ahd. Rahim and Zahurin Halim
Page 40

Chapter 9
Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber
Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad
Page 45

Chapter 10
Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete
Page 49
Chapter 11
The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite
Norshahida Sariifuddin and Zuraida Ahmad

Chapter 12
Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites
Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar

Chapter 13
Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite
Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 14
Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete
Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 15
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1)
Md Abdul Maleque

Chapter 16
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2)
Md Abdul Maleque

Chapter 17
Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination
Md Abdul Maleque and Rezaul Karim

Chapter 18
Mechanical Properties of Wood Plastic Composites
Ooi Chong Jin and Shahjahan Mridha

Chapter 19
Properties of Wood Fiber Reinforced Polypropylene Composite
Shahjahan Mridha and Nafis Sarwar Islam
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete</td>
<td>108</td>
</tr>
<tr>
<td>21</td>
<td>Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads</td>
<td>114</td>
</tr>
<tr>
<td>22</td>
<td>Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite</td>
<td>119</td>
</tr>
<tr>
<td>23</td>
<td>Impact Behavior of Carbon/Epoxy Composite in Moisture and Temperature environments</td>
<td>125</td>
</tr>
<tr>
<td>24</td>
<td>Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures</td>
<td>132</td>
</tr>
<tr>
<td>25</td>
<td>An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading</td>
<td>138</td>
</tr>
<tr>
<td>26</td>
<td>Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites</td>
<td>144</td>
</tr>
<tr>
<td>27</td>
<td>The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites</td>
<td>150</td>
</tr>
<tr>
<td>28</td>
<td>Manganese Doped Hydroxyapatite Powder through Hydrothermal Method</td>
<td>155</td>
</tr>
</tbody>
</table>
Chapter 29
Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder

Asep Sofwan Futurohman Alqap, Nor Hidayu and Iis Sopyan

Chapter 30
Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite

Iskandar I. Yaacob

Chapter 31
Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite

Roslina Ismail and Iskandar I. Yaacob

Chapter 32
Investigation on the Effect of Water Immersion on Cotton Albumen Composite

Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 33
Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures

Zahurin Halim, Shahnor Basri and Mohd Ramli Ajir

Chapter 34
Finite Element Analysis of Interlaminar Stresses in Edge Delamination

Zahurin Halim and Meer Mohd. Adli Taib
Chapter 012

Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites

Zuraida Ahmad¹, Teoh Swin Le² and Kumaran A/L Samannimuthaliar³
¹,²,³Khulliyah of Engineering – International Islamic University Malaysia
✉ : zuraidaa@iium.edu.my

Keywords: Montmorillonite, cotton clay, albumen, nanocomposite.

Abstract: Research in clay-composites technology has been growing worldwide to formulate a new class of biodegradable and environmental friendly composite materials due to environmental concerns. The science of filling biopolymer has been practiced for many years in order to increase stiffness of the matrix. Thereby, this study concerns on fabricating of egg albumen reinforced cotton composites with two types of clay: nanoclay montmorillonite and ball clay were used as the fillers. Bio-polymer cotton albumen clay (BCAC) composites were prepared by dispersing the clays into albumen matrix, prior to the wetting of cotton layers through hands lay-up technique. The BCAC composites containing clay from 1-10 wt% were cured at room temperature, before the samples were prepared for thermal properties analysis and morphological study. Thermogravimetric analysis (TGA) illustrates that the nanocomposites sample have less amount of absorbed water, increased in thermal stability by 125°C and better thermal decomposition at 80% weight loss. In addition, finer particles of the nano-clay montmorillonite produced better wettability of bio-matrix albumen-clay to cotton compared to ball clay.

Introduction

The interest in clay-composites, nano-sized material dispersed within a matrix, has been increasing significantly in new era of polymeric materials. Due to the high surface area of the nano-material, the interfacial areas between the two combined phases are substantially higher than the traditional composite. Clay is an example of the nano-material reinforcement that has being incorporated in the polymer matrix to change and alter the matrix properties.

The literature reported the use of montmorillonite nanoclays as filler for composites in which the matrix polymers are synthetic polymers, such as polyimides, polyamides, methacrylates, and polystyrene [1]. Clay is a naturally abundant mineral material that is cost effective and toxin-free that can be used as one of the components for food, medical, cosmetic and healthcare recipients. Most products desire a balance between stiffness and impact properties of nanocomposites, using layered silicate structures of clay loadings of 10% or less. These clays enhance mechanical, thermal, dimensional and barrier properties [2]. Thermoplastic starch (TPS) reinforced by nanoclay has recently been investigated. Wang et al [3] has investigated epoxy/clay composites with clay concentration from 1-3 wt% by