ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Table of Content

Chapter 1
A Critical Review of Metal Matrix Composite Brake Rotor

Md Abdul Maleque

Chapter 2
Technology of Moulding for Composite Auto Brake Rotor

Md Abdul Maleque

Chapter 3
Fabrication of Nickel Aluminide (Ni$_3$Al) by Hot Isostatic Pressing (HIP)

Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob

Chapter 4
Investigation of Mechanically Alloyed Nd-Fe-B Powder

I.I. Yaacob and H.K. Jun

Chapter 5
Synthesis And Characterization Of Nanocrystalline Ni$_3$Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis

R.Ismail and I.I. Yaacobb

Chapter 6
The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites

Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria

Chapter 7
Fatigue Fracture Mechanism of PVC/CaCO$_3$ nanocomposite

Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 8
Mechanical Behaviour of Eco Core Composite Sandwich Structure

Norhasnidawani Johari, Safiyah Hazwani Abd. Rahim and Zahurin Halim

Chapter 9
Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber

Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad

Chapter 10
Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete
Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 11
The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite
Norshahida Sarifuddin and Zuraida Ahmad

Chapter 12
Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites
Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Sambannamuthaliar

Chapter 13
Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite
Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 14
Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete
Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 15
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1)
Md Abdul Maleque

Chapter 16
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2)
Md Abdul Maleque

Chapter 17
Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination
Md Abdul Maleque and Rezaul Karim

Chapter 18
Mechanical Properties of Wood Plastic Composites
Ooi Chong Jin and Shahjahan Mridha

Chapter 19
Properties of Wood Fiber Reinforced Polypropylene Composite
Shahjahan Mridha and Nafis Sarwar Islam
Chapter 20
The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete

Zuraida Ahmad and Nurizan Omar

Chapter 21
Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads
Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 22
Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite
Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 23
Impact Behavior of Carbon/ Epoxy Composite in Moisture and Temperature environments
Shahjahan Mridha

Chapter 24
Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures
Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 25
An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading
Farrah Yussof and Zuraida Ahmad

Chapter 26
Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites
Teoh Swin Le, Kumaran A/L Samanamuthiah and Zuraida Ahmad

Chapter 27
The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites
Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 28
Manganese Doped Hydroxyapatite Powder through Hydrothermal Method
Asep Sofwan Fathohman, Alqap, Iis Sopyan and Nuur Izzati Mazmaa
Chapter 29
Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder

Asep Sofwan Faurohman Alqap, Nor Hidayu and Iis Sopyan

Chapter 30
Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite

Iskandar I. Yaacob

Chapter 31
Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite

Roslina Ismail and Iskandar I. Yaacob

Chapter 32
Investigation on the Effect of Water Immersion on Cotton Albumen Composite

Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 33
Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures

Zahurin Halim, Shahnor Basri and Mohd Ramli Ajir

Chapter 34
Finite Element Analysis of Interlaminar Stresses in Edge Delamination

Zahurin Halim and Meer Mohd. Adli Taib
Chapter 009

Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber

Zahurin Halim¹, Nabiha Mohd Noh² and Nurshazana Mohamad ³
¹²³ Khulliyah of Engineering-International Islamic University Malaysia
✉️: zahureen@iium.edu.my

Keywords: Biomass, Pellet, Oil Palm, Fiber, Biofuel

Abstract: There is widespread concern that observed increases in the concentration of carbon dioxide and other greenhouse gases in the earth's atmosphere will ultimately lead to changes in the earth's climate. Basically, the atmospheric concentration of carbon dioxide is increasing and that the increase is being driven in large measure by the burning of fossil fuels (coal, oil, and natural gas). Recognizing that fossil fuels play a very important role in the economies and lifestyles of people throughout the world, and acknowledging that great uncertainty exists regarding the climatic consequences of burning fossil fuels, it is reasonable for today’s industry to find for the alternative energy system. Thus, biomass fuels used in efficient ways might provide a sustainable source of such energy. From the test done on both empty fruit bunch (EFB) and mesocarp pellet, the ash content of EFB pellet is in the range of 3.65-5.18% compared to almost 10% of ash content for mesocarp pellet. Lower ash content will result in minimum dust emission during combustion. In contrast, in term of calorific value which is a measurement on how much chemical energy is stored within the material which is then liberated as heat during combustion, mesocarp pellet showed better properties. Therefore, fabrication of these two types of fiber is aimed to enhance the physical properties of the pellet.

Introduction

Malaysia, with its huge oil palm plantations generates abundant palm biomass. In spite of the huge production, the oil consists of only about 10% of the total biomass produced in the plantation [1]. The oil palm biomass including EFB and mesocarp fiber is burnt as fuel in the boiler to produce steam for electricity generation as well as processing of palm oil fruits [2]. However, only a small proportion of these by-products are being used as fuel because of their high moisture, high polymorphism and low energy density. These troublesome characteristics increase costs of transport, handling and storage, making the use of biomass as a fuel impractical [2]. Some of these drawbacks can be overcome through densification of biomass fiber for pellet production.

Densification or pelletize is the process of compacting the biomass by-product like EFB and mesocarp fiber into a uniform solid fuel called pellet. It has higher density and energy content and less moisture compared to its raw materials. Pelletize of biomass can be done using various techniques, either with or without binder addition. Biomass pellets are mostly used for cooking, heating, barbequing and camping in countries such as USA, EU, Australia, Japan, Korea and Taiwan [3]. In the developing countries, biomass briquettes are mainly for household usage only.