ADVANCES IN COMPOSITE MATERIALS Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # ADVANCES IN COMPOSITE MATERIALS Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim ### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Iskandar Idris Yaacob, Md Abdul Maleque & Zahurin Halim: Advances in Composite Materials. ISBN: 978-967-418-231-1 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Content** | Chapter 1 | 1 | |--|----| | A Critical Review of Metal Matrix Composite Brake Rotor Md Abdul Maleque | | | Chapter 2 Technology of Moulding for Composite Auto Brake Rotor | 7 | | Md Abdul Maleque Chapter 3 Fabrication of Nickel Aluminide (Ni ₃ Al) by Hot Isostatic Pressing (HIP) Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob | 13 | | Chapter4 Investigation of Mechanically Alloyed Nd-Fe-B Powder | 17 | | I.I. Yacoob and H.K. Jun | | | Chapter 5 Synthesis And Characterization Of Nanocrystalline Ni ₃ Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis **R.Ismail and 1.1. Yaacob*** | 23 | | Chapter 6 The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria | 29 | | Chapter 7 Fatigue Fracture Mechanism of PVC/CaCO ₃ nanocomposite | 34 | | Noorasikin Samat, Alan Whittle and Mark Hoffman | | | Chapter 8 Mechanical Behaviour of Eco Core Composite Sandwich Structure Norhasnidawani Johari Safiyah Hazwani Abd. Rahim and Zahurin Halim | 40 | | Chapter 9 Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber | 45 | | Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad | | | Chapter 10 Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete | 49 | | Afigah Omar, | Nur | Humair | rah A. | Razak | and | Zuraida | Ahmad | |--------------|-----|---------------|--------|-------------|--------|------------|---------| | zijigan oma, | | A X ++111++11 | | 1 COLD DATE | CT I I | 2011 01010 | 11///// | | Chapter 11 The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite | 55 | |---|-----| | Norshahida Sarifuddin and Zuraida Ahmad | | | Chapter 12 Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites | 62 | | Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar | | | Chapter 13 Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite | 68 | | Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad | | | Chapter 14 Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete | 74 | | Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad | | | Chapter 15 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1) Md Abdul Maleque | 80 | | Chapter 16 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2) | 86 | | Md Abdul Maleque Chapter 17 Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination Md Abdul Maleque and Rezaul Karim | 90 | | Chapter 18 Mechanical Properties of Wood Plastic Composites | 96 | | Ooi Chong Jin and Shahjahan Mridha | | | Chapter 19 Properties of Wood Fiber Reinforced Polypropylene Composite Shahjahan Mridha and Nafis Sarwar Islam | 101 | | Chapter 20 The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete | 108 | |---|-----| | Zuraida Ahmad and Nurizan Omar | | | Chapter 21 Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads Ahmed Nazrin Md Idriss and Shahjahan Mridha | 114 | | Chapter 22 Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite | 119 | | Ahmed Nazrin Md Idriss and Shahjahan Mridha | | | Chapter 23 Impact Behavior of Carbon/ Epoxy Composite in Moisture and Temperature environments | 125 | | Shahjahan Mridha | | | Chapter 24 Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures | 132 | | Ahmed Nazrin Md Idriss and Shahjahan Mridha | | | Chapter 25 An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading | 138 | | Farrah Yussof and Zuraida Ahmad | | | Chapter 26 Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites | 144 | | Teoh Swin Le, Kumaran A/L Samannamuthaliar and Zuraida Ahmad | | | Chapter 27 The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites | 150 | | Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 28 Manganese Doped Hydroxyapatite Powder through Hydrothermal Method Asep Sofwan Faturohman, Alqap, Iis Sopyan and Nuur Izzati Mazmaa | 155 | | Chapter 29 Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder Agen Softwar Entwerkman Alaga New Hidron and Ita Someon | 161 | |---|-----| | Asep Sofwan Faturohman Alqap, Nor Hidayu and Iis Sopyan | | | Chapter 30 Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite Iskandar I. Yaacob | 167 | | Chapter 31 Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite | 172 | | Roslina Ismail and Iskandar I. Yaacob | | | Chapter 32 Investigation on the Effect of Water Immersion on Cotton Albumen Composite | 178 | | Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof | | | Chapter 33 Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures | 182 | | Zahurin Halim , Shahnor Basri and Mohd Ramli Ajir | | | Chapter 34 Finite Element Analysis of Interlaminar Stresses in Edge Delamination | 190 | | Zahurin Halim and Meor Mohd. Adli Taib | | ## Mechanical Behaviour of Eco Core Composite Sandwich Structure Norhasnidawani Johari¹ Safiyah Hazwani Abd. Rahim² and Zahurin Halim³ 1,2,3 Kulliyyah of Engineering – International Islamic University Malaysia ☑: zahureen@iium.edu.my ☑ Keywords: Composite sandwich structure, kenaf, eco core, fibre, rubber **Abstract:** This chapter concerns on fabricating the composites sandwich structures with kenaf as the core and aluminium as the facesheet with a view to replace the conventional sandwich structure using synthetic core which is not biodegradable. Two types of kenaf fibre were used in this research which is long fibre and short fibre. Composites were prepared by hand lay-up technique. Mechanical study of composites was performed by using tensile test, impact test and flat wise compression test respectively. A significant increase has been observed in the mechanical properties such as tensile strength and compressive strength with the addition of the rubber. ### Introduction Sandwich structures have wide area of application nowadays and many studies have been done to improve the conventional sandwich structure to make it excellent sandwich structure. Sandwich structures have been used in three major applications such as in military ship, airplane and building construction. The many advantages of sandwich constructions, the development of new materials and the need for high performance, low-weight structures ensure that sandwich construction will continue to be in demand. Sandwich structure is one of composite materials are fabricated by joining two thin stiff skins and lightweight core to form a unique structure. Using composite sandwich construction, pre-made sandwich structure is readily to use compare to conventional construction which taking a long time. Add to this the advantage of no corrosion and the light weight afforded by the composite sandwich construction [1]. Increasing worldwide environment awareness is encouraging scientific research into the development of cheaper, more environmental friendly and sustainable construction. Natural fibers are widely used for environment concern. Mostly, the available cores in sandwich structures used synthetic fibers. Several problems have been faced when using synthetic fiber as core for sandwich structure such as heavy weight, poor mechanical properties and less wear resistance. Therefore, in this chapter a sandwich structure develment using kenaf as a core and aluminium as skin is presented in order to improve and optimize mechanical properties of this composite[2]. One of the unique aspects of designing parts with fibre reinforced composite materials is that the mechanical properties of the material can be tailored to fit a certain application. By changing the orientation or placement of the fibres the material can be designed to exhibit properties that are isotropic or highly anisotropic depending on the desired end result.