ADVANCES IN MATERIALS ENGINEERING
VOLUME 2

Edited By:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
Amorphous Coating of Iron Nickel Alloy
Page 1
Suryanto

Chapter 2
Characterization of Electroplated Nanocrystalline NiFe Alloy Films
Page 7
Yusrini Marita and Iskandar I. Yaacob

Chapter 3
Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution
Page 13
Suryanto

Chapter 4
Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation
Page 19
Muh Rafiq Mirza Julaihi, Asep Sofwan Faturrohman Alqap and Iis Sopyan

Chapter 5
Dynamic Mechanical Analysis of Carbon Fibre Composites
Page 25
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 6
Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles
Page 31
Koay Mei Hye and Iskandar I. Yaacob

Chapter 7
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ’ Precipitates
Page 37
Roslina Ismail and Iskandar I. Yaacob

Chapter 8
Effect of Sintering Temperature on Protein Foaming-consolidation: Porous Alumina-tricalcium Phosphate Composites
Page 43
Ahmad Fadli and Iis Sopyan

Chapter 9
Electrical Property of ITO Thin Film Deposited by RF Magnetron Sputtering
Page 49
Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana

Chapter 10
Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications
Page 55
Souad. A. Mohamad, A. K. Arof

Chapter 11
Electrodeposited CdS / CdTe Solar Cells
Page 61
Souad. A. Mohamad

Chapter 12
Fabrication of Biomass Pellet from Mesocarp Fiber
Page 65
Zahurin Halim and Nurshazana Mohamad

Chapter 13
Fabrication of Kenaf Sandwich Panel
Page 68
Siti Khadijah Abdul Rahman and Zahurin Halim
Chapter 14
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Drying Time 78
Fariza Abdul Rahman and Zuraida Ahmad

Chapter 15
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Sintering Temperature 84
Zuraida Ahmad and Fariza Abdul Rahman

Chapter 16
FTIR Analysis - Aluminium Hydroxide Treated with Silane Coupling Agent 89
Noorasikin Samat, Nor Suhaila Nor Saidi and Muhammad Saffuan Sahat

Chapter 17
Inorganic / Organic /Inorganic Double Junction Thin Film Solar Cells 92
Souad. A. Mohamad

Chapter 18
Investigation on The Effect of Ultra Violet on Cotton Albumen Composite 96
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 19
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent 100
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Natural Dye Coated Nano crystalline Tio2 Electrode Films for DSSCs 106
Souad. A. Mohamad and Iraj Alaei

Chapter 21
Normal Deposition to Anomalous Deposition 109
Suryanto

Chapter 22
Polymer Clay Nanocomposites: Part II- Synthesis of Polymer Nanocomposites 115
Noor Azlina Hassan, Norita Hassan

Chapter 23
Production of Porous Calcium Phosphate Ceramics through Polymeric Sponge Method 120
Asep Sofwan Faturohman Alqap, Nur Ain Rakman, and Iis Sopyan

Chapter 24
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method 126
Asep Sofwan Faturohman Alqap, Iis Sopyan and Zuria Farhana Kushaili

Chapter 25
Stress Analysis of Backend Metallization 132
Iskandar I. Yaacob and Goh Chia Lan

Chapter 26
Study on Metal Removing from Alumina Ceramics 137
Agus Geter Edy Sutjipto and Muhyiddin Bin Budah@Udah
Chapter 27
Surface Quality of Dipterocarpus Spp under Tropical Climate Change: Effect of Pre-Weathering
Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films
Scoh Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition
Agus Geter Edy Sutjipto, Sugrib Kumar Shaia

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications
Souad. A. Mohamad
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Sintering Temperature

Zuraida Ahmad ¹ and Fariza Abdul Rahman ²
¹,²: Faculty of Engineering-International Islamic University Malaysia
✉: zuraidaa@iium.edu.my, fariza_iuu@yahoo.com

Keywords: TCP, PU foam, Foam impregnation method, Sintering temperature.

Abstract. Artificial bone graft has become a favourable solution for bone substitute, replacing the function of autograft and allograft. Due to this, study on the development of porous artificial bone graft has risen rapidly in line with the demand. The critical part of this development falls on the issues of fabricating porous structure with high interconnectivity while maintaining its mechanical strength. The purpose of this study is to develop porous tricalcium phosphate (TCP) by utilising low-cost PU foam as template for bone graft substitute. Foam impregnation method was selected based on its ability to form three-dimensional porous bodies with a simple procedure. The results obtained showed that increasing sintering temperature from 1000 to 1200 °C added the mechanical strength to porous TCP ranging from 0.19-4.72 MPa. The porosity however, dropped from 36.0 to 25.4% with the increment of sintering temperature. The porous TCP block also possessed a highly interconnected pore which is suitable to be applied as artificial bone graft.

Introduction
In life, our body is inadvertently exposed to danger, even in engaging simple activities such as cleaning and exercising. An injured bone needs to be healed in order for it to function normally. Generally, bone defects are overcome by autograft, allograft, artificial bone graft or a combination of these materials [1]. The “gold standard” in replacing the wounded bone however, is an autogenous bone graft. It is a process using the bone taken from the patient’s body, which is ideal but also has disadvantages including increased blood loss, operative time and pain [2]. Allograft, on the other hand, is the bone taken from cadaver source and is an alternative to autograft. Unfortunately, cases such as viral transmission and hepatitis limit its application [3]. Due to the limited natural bone availability, the procedure becomes expensive, thus making the application of artificial bone graft ideal and increasingly popular nowadays.

The artificial bone grafts are produced from various types of materials including metals, ceramics, polymers and composites. Bioceramics however, are chosen based on its salient properties such as nontoxic, nonimmunogenic, easy to sterilise and available in unlimited supply [3]. In recent years, study on calcium phosphate has increased as it exists in human body as inorganic elements of the hard tissues [4]. This had included hydroxyapatite (HA) and tricalcium phosphate (TCP). Between HA and TCP, TCP is preferable because it shows a good resorbable property. TCP can exist in three allotropic forms, which are α-, α'- and β-TCP. In addition, for artificial bone material selection, β-TCP is preferred compared to α- and α'-TCP because of its high bioresorption rate and chemical stability.