ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob
Md Abdul Maleque
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
A Critical Review of Metal Matrix Composite Brake Rotor
Md Abdul Maleque
1

Chapter 2
Technology of Moulding for Composite Auto Brake Rotor
Md Abdul Maleque
7

Chapter 3
Fabrication of Nickel Aluminide (Ni$_3$Al) by Hot Isostatic Pressing (HIP)
Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob
13

Chapter 4
Investigation of Mechanically Alloyed Nd-Fe-B Powder
I.I. Yacoob and H.K. Jun
17

Chapter 5
Synthesis And Characterization Of Nanocrystalline Ni$_3$Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis
R.Ismail and I.I. Yaacob
23

Chapter 6
The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites
Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria
29

Chapter 7
Fatigue Fracture Mechanism of PVC/CaCO$_3$ nanocomposite
Noorasikin Samat, Alan Whittle and Mark Hoffman
34

Chapter 8
Mechanical Behaviour of Eco Core Composite Sandwich Structure
Norhasnidawani Johari, Safiyah Hazwani Abd. Rahim and Zahurin Halim
40

Chapter 9
Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber
Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad
45

Chapter 10
Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete
49
Chapter 11
The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite

Norshahida Sarifuddin and Zuraida Ahmad

Chapter 12
Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites

Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthalier

Chapter 13
Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite

Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 14
Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete

Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad

Chapter 15
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1)

Md Abdul Maleque

Chapter 16
Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2)

Md Abdul Maleque

Chapter 17
Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination

Md Abdul Maleque and Rezaul Karim

Chapter 18
Mechanical Properties of Wood Plastic Composites

Ooi Chong Jin and Shahjahan Mridha

Chapter 19
Properties of Wood Fiber Reinforced Polypropylene Composite

Shahjahan Mridha and Nafis Sarwar Islam
Chapter 20
The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete
Zuraida Ahmad and Nurizan Omar

Chapter 21
Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads
Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 22
Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite
Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 23
Impact Behavior of Carbon/ Epoxy Composite in Moisture and Temperature environments
Shahjahan Mridha

Chapter 24
Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures
Ahmed Nazrin Md Idriss and Shahjahan Mridha

Chapter 25
An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading
Farrah Yusoff and Zuraida Ahmad

Chapter 26
Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites
Teoh Swin Le, Kumarar A/L Samannamuthaliar and Zuraida Ahmad

Chapter 27
The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites
Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 28
Manganese Doped Hydroxyapatite Powder through Hydrothermal Method
Asep Sofwan Faturohman, Alqap, Iis Sopyan and Nur Izzati Mazmaa
Chapter 29
Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder

Asep Sofwan Faturohman Alqap, Nor Hidayu and Iis Sopyan

Chapter 30
Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite

Iskandar I. Yaacob

Chapter 31
Fabrication of Nickel Aluminode Intermetallic-Alumina Nanocomposite

Roslina Ismail and Iskandar I. Yaacob

Chapter 32
Investigation on the Effect of Water Immersion on Cotton Albumen Composite

Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 33
Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures

Zahurin Halim, Shahnor Basri and Mohd Ramli Ajir

Chapter 34
Finite Element Analysis of Interlaminar Stresses in Edge Delamination

Zahurin Halim and Meer Mohd. Adli Taib
Synthesis and Characterization of Nanocrystalline Ni₃Al Intermetallic Produced by Mechanical Alloying and Reaction Synthesis

Roslina Ismail¹ and Iskandar I. Yaacob²
¹Faculty of Engineering, University of Malaya
²Kulliyyah of Engineering – International Islamic University Malaysia
✉: iskandar_yaacob@iiu.edu.my

Keywords: Intermetallic alloys and compounds, reaction synthesis, mechanical alloying.

Abstract: Stoichiometric nanocrystalline Ni₃Al was prepared by mechanical alloying of elemental Ni and Al powders under argon gas atmosphere for different time (4-48h). The nanostructured Ni₃Al powders were consolidated into bulk compacts and sintered in a small DTA furnace under flowing Argon to observe the exothermic reaction between the stoichiometric Ni and Al. The estimated crystallite size showed that the mechanically alloyed Ni₃Al grain size decrease from 127 nm to 9.36 nm with increasing mechanical alloying time from 4h to 48h. Agglomerations of the powder particles prevalently occurred as observed from the SEM micrographs. Saturation magnetization, Mₛ value of the mechanically alloyed powders decreases as milling time increases due to smaller amount of elemental nickel responding to the applied fields. Following reaction synthesis of the compacted powders, thermal profile analysis revealed the presence of exothermic peaks in the DTA curves at about 400°C. Relative densities of the sintered compact were measured and found to be from 77-88% with the exception for the 48h mechanically alloyed sintered compact from milling balls contaminations. XRD results of the sintered compacts mechanically alloyed for 18h and above revealed the formation of pure nanocrystalline Ni₃Al. Crystallites size estimations showed the occurrence of grain growth during sintering.

Introduction

Intermetallics nickel aluminide, Ni₃Al has attracted significant attention in the area of aerospace, structural and engine applications at elevated service temperature due to its interesting combination of properties such as anomalous yield behaviour, high creep strength supplemented by low density and improved oxidation resistance. However, its brittleness and low toughness at room temperature has posed as a barrier for practical application. It has succeeded in increasing the nickel aluminide ductility by microalloying with boron and effectively suppresses the intergranular fracture [1]. It has also been suggested that brittle materials may develop some ductility by refining their grains below critical size through high energy ball milling [2]. The synthesis of nanocrystalline nickel aluminide compounds by ball milling has been successfully achieved by several researchers [3-6]. Nanocrystalline materials exhibit unique properties due to new deformation modes (i.e. superplastic behavior) because of large fraction of grain boundaries with high concentration of defects that the