ADVANCES IN MATERIALS ENGINEERING
VOLUME 2

Edited By:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
Amorphous Coating of Iron Nickel Alloy
Suryanto

Chapter 2
Characterization of Electroplated Nanocrystalline NiFe Alloy Films
Yusrini Marita and Iskandar I. Yaacob
Page 7

Chapter 3
Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution
Suryanto
Page 13

Chapter 4
Development of Carbon Doped TiO$_2$ Photocatalyst for Pigment Degradation
Muh Rafiq Mirza Julaihi, Asep Sofwan Faturrohman Alqap and Iis Sopyan
Page 19

Chapter 5
Dynamic Mechanical Analysis of Carbon Fibre Composites
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid
Page 25

Chapter 6
Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles
Koay Mei Hye and Iskandar I. Yaacob
Page 31

Chapter 7
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ' Precipitates
Roslina Ismail and Iskandar I. Yaacob
Page 37

Chapter 8
Effect of Sintering Temperature on Protein Foaming-consolidation
Porous Alumina-tricalcium Phosphate Composites
Ahmad Fadli and Iis Sopyan
Page 43

Chapter 9
Electrical Property of ITO Thin Film Deposited by Rf Magnetron Sputtering
Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana
Page 49

Chapter 10
Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications
Souad. A. Mohamad, A. K. Arof
Page 55

Chapter 11
Electrodeposited CdS / CdTe Solar Cells
Souad. A. Mohamad
Page 61

Chapter 12
Fabrication of Biomass Pellet from Mesocarp Fiber
Zahurin Halim and Nurshazana Mohamad
Page 65

Chapter 13
Fabrication of Kenaf Sandwich Panel
Siti Khadijah Abdul Rahman and Zahurin Halim
Page 68
Chapter 27
Surface Quality of *Dipterocarpus* Spp under Tropical Climate Change: Effect of Pre-Weathering
Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films
Scoh Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition
Agus Geter Edy Sutjipto, Sugrib Kumar Shaha

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications
Souad. A. Mohamad
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ' Precipitates

Roslina Ismail1 and Iskandar I. Yaacob2

1 Faculty of Engineering, University of Malaya
2 Kulliyyah of Engineering – International Islamic University Malaysia
$\text{✉} :$ iskandar_yaacob@iium.edu.my

Keywords: Nickel aluminide, Powder metallurgy, Reaction synthesis, Saturation magnetization, Microstructures.

Abstract. Nickel aluminide-alumina nanocomposites were prepared by mixing nanosized alumina at 5 and 15 wt-percent with Ni and Al powder in a planetary ball mill. The mixture was then compacted and sintered under inert condition in a tube furnace. The occurrence of reaction synthesis during sintering was detected by the presence of a ‘large’ exothermic peak at below 600°C of a differential thermal analysis curve. The hardness value for the composite containing 5% alumina was about two times higher than Ni$_3$Al intermetallic. Its saturation magnetization (Ms) was very low indicating the presence of a small amount of elemental Ni. X-Ray Diffraction (XRD) measurements showed peaks corresponding to Ni-Al and Ni$_3$Al. Optical micrographs investigations revealed different microstructures for both composites due to increased lattice mismatch.

Introduction

Considerable research on ceramic reinforced composite has been conducted as to improve monolithic Ni$_3$Al and NiAl properties such as low ambient tensile ductility and insufficient high-temperature strength and creep resistance limit. Incorporation of these high temperature ceramic reinforcements in the form of particulates or fibres also decreases the composite’s density and hopefully leads to increase in its specific properties. This enables material designers and manufacturer to fabricate high performance materials; the type of materials essential for the next generation of high technology industries such as aerospace/aircraft and high temperature applications. However, most of the studies are still in the feasibility stage aiming primarily at determining basic mechanical properties and chemical stability [1-4].

One of the major problem in forming intermetallics is their slow diffusion kinetics in intermetallic requires a long sintering time and a high sintering temperature[5]. Combination of conventional powder metallurgy with reaction synthesis technique can shortened the time and lowers the sintering temperature [6-7].

This chapter reports the effect of adding different amount of nanosized alumina in intermetallic nickel aluminide on the formation of gamma prime precipitate (γ') or aluminide. The influence of alumina reinforcement in nickel aluminide lattice parameters which is