ADVANCES IN MATERIALS ENGINEERING
VOLUME 2

Edited By:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
Md Abdul Maleque, Iskandar Idris Yaacob & Zahurin Halim: Advances in Materials Engineering

ISBN: 978-967-418-168-0

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)
Table of Content

Chapter 1
Amorphous Coating of Iron Nickel Alloy

Chapter 2
Characterization of Electroplated Nanocrystalline NiFe Alloy Films

Chapter 3
Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution

Chapter 4
Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation

Chapter 5
Dynamic Mechanical Analysis of Carbon Fibre Composites

Chapter 6
Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles

Chapter 7
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ′ Precipitates

Chapter 8
Effect of Sintering Temperature on Protein Foaming-consolidation of Porous Alumina-tricalcium Phosphate Composites

Chapter 9
Electrical Property of ITO Thin Film Deposited by RF Magnetron Sputtering

Chapter 10
Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications

Chapter 11
Electrodeposited CdS / CdTe Solar Cells

Chapter 12
Fabrication of Biomass Pellet from Mesocarp Fiber

Chapter 13
Fabrication of Kenaf Sandwich Panel

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amorphous Coating of Iron Nickel Alloy</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Characterization of Electroplated Nanocrystalline NiFe Alloy Films</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Dynamic Mechanical Analysis of Carbon Fibre Composites</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ′ Precipitates</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>Effect of Sintering Temperature on Protein Foaming-consolidation of Porous Alumina-tricalcium Phosphate Composites</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>Electrical Property of ITO Thin Film Deposited by RF Magnetron Sputtering</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Electrodeposited CdS / CdTe Solar Cells</td>
<td>61</td>
</tr>
<tr>
<td>12</td>
<td>Fabrication of Biomass Pellet from Mesocarp Fiber</td>
<td>65</td>
</tr>
<tr>
<td>13</td>
<td>Fabrication of Kenaf Sandwich Panel</td>
<td>68</td>
</tr>
</tbody>
</table>
Chapter 14
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Drying Time 78
Fariza Abdul Rahman and Zuraida Ahmad

Chapter 15
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Sintering Temperature 84
Zuraida Ahmad and Fariza Abdul Rahman

Chapter 16
FTIR Analysis - Aluminium Hydroxide Treated with Silane Coupling Agent 89
Noorasikin Samat, Nor Suhaila Nor Saidi and Muhammad Saffuan Sahat

Chapter 17
Inorganic / Organic /Inorganic Double Junction Thin Film Solar Cells 92
Souad. A. Mohamad

Chapter 18
Investigation on The Effect of Ultra Violet on Cotton Albumen Composite 96
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 19
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent 100
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Natural Dye Coated Nano crystalline TiO2 Electrode Films for DSSCs 106
Souad. A. Mohamad and Iraj Alaei

Chapter 21
Normal Deposition to Anomalous Deposition 109
Suryanto

Chapter 22
Polymer Clay Nanocomposites: Part II- Synthesis of Polymer Nanocomposites 115
Noor Azlina Hassan, Norita Hassan

Chapter 23
Production of Porous Calcium Phosphate Ceramics through Polymeric Sponge Method 120
Asep Sofwan Faturrohman Alqap, Nur Ain Rakman, and Iis Sopyan

Chapter 24
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method 126
Asep Sofwan Faturrohman Alqap, Iis Sopyan and Zuria Farhana Kushaili

Chapter 25
Stress Analysis of Backend Metallization 132
Iskandar I. Yaacob and Goh Chia Lan

Chapter 26
Study on Metal Removing from Alumina Ceramics 137
Agus Geter Edy Sutjipto and Muhyiddin Bin Budah@Udah
Chapter 27
Surface Quality of *Dipterocarpus Spp* under Tropical Climate Change: Effect of Pre-Weathering 146
Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre 151
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films 157
Scoh Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions 164
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC 170
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC 175
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition 180
Agus Geter Edy Sutjipto, Sugrib Kumar Shaha

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric 186
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications 194
Souad. A. Mohamad
Dynamic Mechanical Analysis of Carbon Fibre Composites

Hazleen Anuar¹, Sahrim Hj. Ahmad² and Rozaidi Rasid³
¹Faculty of Engineering – International Islamic University Malaysia
²,³Fakulti Sains dan Teknologi – Universiti Kebangsaan Malaysia
✉: hazleen@iium.edu.my, hsha@gmail.com, rozaidi@ukm.my

Keywords: Dynamic mechanical analysis, Short carbon fiber, Thermoplastic natural rubber, Composite, Surface treatment.

Abstract. Thermo-mechanical properties of thermoplastic natural rubber (TPNR) reinforced short carbon fiber (CF) was investigated by means of dynamic mechanical analysis. Blend of natural rubber (NR) / polypropylene (PP) and liquid natural rubber (LNR) was carried out by melt blending in Haake internal mixer at 180 °C processing temperature, 50 r.p.m. rotation of rotor speed and 12 min mixing time. Treated and untreated carbon fibre of 0, 10, 20 and 30 Vf % was added as reinforcement in TPNR matrix. Samples in the form of 3 mm thickness were prepared by hydraulic hot press compression moulding. It was found that the peak of tan δ, E” and midpoint of E’ versus temperature curves almost coincide with one another for TPNR matrix. Contrary to TPNR, tan δ, E” and E’ were not coincide in the case of reinforced TPNR composites. The presence of CF in the TPNR had increased the tan δ and E” surface treatment employed on CF increased the Tg value indicates on better fiber-matrix interaction.

Introduction
Dynamic mechanical analysis (DMA) is a sensitive technique that characterizes the mechanical responses of materials by monitoring property changes in a material with regard to the temperature and frequencies. DMA separates the dynamic response of materials into and elastic part, E’ (storage modulus) and viscous or damping component, E” (loss modulus). The elastic process described the energy stored in the system, whereas the viscous component describes the energy dissipated during the process.

In short fibre reinforced thermoplastics, both the storage modulus and damping are governed by polymer matrices as well as the fillers. Studies by Akay [1] on carbon fibre reinforced epoxy revealed that tan δ occurs at a higher temperature than the loss modulus peak. The temperature interval between peaks varies depending on the fibre orientation with respect to direction of applied load. The glass transition temperature (Tg) consistent with the extent of the stress shielding of the matrix by fibres in composites. Tg also indicates at which composite suffers significant loss of stiffness.

This chapter presented the effect of fibre loading and sulphuric acid treated on dynamic mechanical behaviour of carbon fibre reinforced TPNR composites. Storage modulus, loss modulus and tan δ of reinforced and unreinforced TPNR composites are presented in this paper.

25