ADVANCES IN MATERIALS ENGINEERING Volume 2

vorume 2

Edited By: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ADVANCES IN MATERIALS ENGINEERING VOLUME 2

Edited By: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim

Published by: **IIUM Press** International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying. recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Md Abdul Maleque, Iskandar Idris Yaacob & Zahurin Halim: Advances in Materials Engineering

ISBN: 978-967-418-168-0

Member of Majlis Penerbitan Ilmiah Malaysia -- MAPIM (Malaysian Scholarly Publishing Council)

PRINTED BY: HUM PRINTING SDN.BHD. NO. 1, JALAN INDUSTRI BATU CAVES 1/3 TAMAN PERINDUSTRIAN BATU CAVES BATU CAVES CENTRE POINT 68100 BATU CAVES SELANGOR DARUL EHSAN

TEL: +603-6188 1542 / 44 / 45 FAX: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

Table of Content

Chapter 1 Amorphous Coating of Iron Nickel Alloy 1		
Suryanto		
Chapter2 Characterization of Electroplated Nanocrystalline NiFe Alloy Films 7		
Yusrini Marita and Iskandar I. Yaacob		
Chapter 3 Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution 13		
Suryanto		
Chapter 4 Development of Carbon Doped TiO ₂ Photocatalyst for Pigment Degradation 19		
Muh Rafiq Mirza Julaihi, Asep Sofwan Faturohman Alqap and Iis Sopyan		
Chapter 5		
Dynamic Mechanical Analysis of Carbon Fibre Composites Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid		
Chapter 6		
Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles 31		
Koay Mei Hyie and Iskandar I. Yaacob		
Chapter 7		
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the		
Formation of γ' Precipitates 37		
Roslina Ismail and Iskandar I. Yaacob		
Chapter 8 Effect of Sintering Temperature on Protein Foaming-consolidation 43		
Porous Alumina-tricalcium Phosphate Composites		
Ahmad Fadli and Iis Sopyan		
Chapter 9		
Electrical Property of ITO Thin Film Deposited by Rf Magnetron Sputtering Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana		
Chapter 10		
Electrochemical Study of Zinc Sclenide Thin Films Prepared for Photovoltaic Applications 55 Souad. A. Mohamad, A. K. Arof		
Chapter 11		
Electrodeposited CdS / CdTe Solar Cells 61		
Souad. A. Mohamad		
Chapter 12		
Fabrication of Biomass Pellet from Mesocarp Fiber 7 Sharin Helim and Nurshazara Mahamad		
Zahurin Halim and Nurshazana Mohamad Chapter 13		
Fabrication of Kenaf Sandwich Panel 68		
Siti Khadijah Ahdul Rahman and Zahurin Halim		

	Zuraida Ahmad and Fariza Abdul Ra	ahman
Chapter 16		
FTIR Analysis - Aluminium Hydroxide Treated with	1 Silane Coupling Agent	89
Noorasikin Samat, Nor Suhail	a Nor Saidi and Muhammad Saffuan	Sahat
Chapter 17		
Inorganic / Organic /Inorganic Double Junction Thin	r Film Solar Cells	92
	Souad. A. Mol	namad
Chapter 18		
Investigation on The Effect of Ultra Violet on Cotto	n Albumen Composite	96
Zahurin Halir	n, Zuraida Ahmad and Fauziah Md	Yusoi
Chapter 19		
Measurement of Oxygen Permeability in Bulk Alloy Constituent	s by Internal Oxidation of Dilute	100
	Mohd Hanafi Bin Ani and Raihan O	thman
Chapter 20	violid Hanan Din Am and Kaman O	шша
Natural Dye Coated Nanocrystalline Tio2 Electrode	Films for DSSCs	106
Natural Dyc Coaled Nanocrystannic 1102 Electrode	Souad. A. Mohamad and Iraj	
Chanton 21	Souad, A. Mohamad and haj	Alaci
Chapter 21		109
Normal Deposition to Anomalous Deposition	C.,	
Cha-tuu 22	Su	ryanto
Chapter 22	CD-1	115
Polymer Clay Nanocomposites: Part II- Synthesis of	Noor Azlina Hassan, Norita F	115 Tassar
Chapter 23		
Production of Porous Calcium Phosphate Ceramics	through Polymeric Sponge Method	120
Asep Sofwan Faturohma	n Alqap, Nur Ain Rakman, and Iis S	opyan
Chapter 24		
Silicone Doped Calcium Phosphate Powder Synthes Asen Sofwan Faturohman Ale	ized via Hydrothermal Method jap, Iis Sopyan and Zuria Farhana Ki	126 ushail
Chapter 25	jap, no sopjan ana zana i amana in	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Stress Analysis of Backend Metallization		132
Stress That years of Buckeria Metallization	Iskandar I. Yaacob and Goh Ch	
Chapter 26	iskandar i. Taacoo and Gon Cil	ia Dal
Study on Metal Removing from Alumina Ceramics		137
<u>-</u>	Sutjipto and Muhyiddin Bin Budah@	
Agus Octor Eury	Jagupio ana irianyiaani Din Dudan(e	$\nu_i \cup uat$

78

84

Fariza Abdul Rahman and Zuraida Ahmad

Foam Impregnation Method for Artificial Bone Graft Application

Foam Impregnation Method for Artificial Bone Graft Application

Chapter 14

Chapter 15

: Study on the Effect of Drying Time

: Study on the Effect of Sintering Temperature

Chapter 27 Surface Quality of Dipterocarpus Spp under Tropical Climate Change: Effect of Pre-Weathering 146 Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed
Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre 151
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid
Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films 157
Seoh Hian Teh and Iskandar I. Yaacob
Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions 164
Iskandar I. Yaacob
Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC 170
Noorasikin Samat, Alan Whittle and Mark Hoffman
Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC 175
Noorasikin Samat, Alan Whittle and Mark Hoffman
Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition 180
Agus Geter Edy Sutjipto, Sugrib Kumar Shaha
Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized 186
Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita
Chapter 35

194

Souad. A. Mohamad

ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications

Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation

Muh Rafiq Mirza Julaihi¹, Asep Sofwan Faturohman Alqap¹ and Iis Sopyan²

1,2 Faculty of Engineering – International Islamic University Malaysia

☑: sopyan@iium.edu.my, asepsofwan4@gmail.com

Keywords: Anatase, Rutile, TiO₂, Photocatalyst, Carbon dope, Methyl Orange.

Abstract. TiO₂ is a semiconductor and is chemically activated by light energy. The photoactivity of TiO₂ tends to decompose organic materials coming in contact with it. However, one limitation of TiO₂ photocatalyst is that it is active only under UV light, not visible light. Doping TiO₂ with carbon here aims to make it photoactive in visible light as well as more photoactive in UV light. Carbon-doped TiO₂ was prepared from Degussa P25 TiO₂ doped with white sugar as the carbon source in a low temperature process. Methyl orange (MO) was used as the representative for degradation test under the UV light irradiation. The MO degradation test showed that the 2% C doped Degussa P25 has the highest photocatalytic activity and the photocatalytic activity of Degussa P25 has been enhanced in the UV light range.

Introduction

Titanium dioxide (TiO₂) is a semiconductive material which has been applied in many industrial applications. It has been used as a pigment, powder for cosmetics, as well as a photocatalyst working under UV light [1]. When illuminated with UV light, an electron is promoted from the valence band to the conduction band of TiO2 to produce an electron-hole pair. Hydroxyl radicals are produced when reacting with water molecules, since the positive hole has a high oxidative potential [2]. The hydroxyl radicals are powerful oxidizers because the electron-hole pair recombines much more slowly than other reactions. Since it is a strong oxidizer, it has been used widely for environmental applications. These include air purification, water purification, antifog mirrors, self-cleaning tiles and self-sterilizing operating theater floor tiles [1,2]. Methyl orange was used for measuring the degradation rate in the photocatalytic activity test because it was able to change its color when it has been neutralized. TiO2 photocatalysts can only be activated as a catalyst by UV light irridiation (λ < 400nm). UV occupies only 4% of the light emitted by sunlight. However, by doping TiO2 photocatalyst with certain elements, its photocatalytic activity can be enhanced. As a result, the usage of TiO2 as photocatalyst for environmental applications would be enhanced in the UV light region. Therefore, better utilization of light sources such as sunlight and florescent light for photocatalysis is expected if doping of TiO2 is done [1-3].

The chapter has focused on the development of carbon doped TiO_2 photocatalyst. Carbon can be doped into TiO_2 by carbonization [4,5], heating of TiO_2 gel in a furnace [6], ball milling of TiO_2 with ethanol [7] and oxidizing-carbonizing of Ti surface to produce