ADVANCES IN MATERIALS ENGINEERING Volume 2 vorume 2 Edited By: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA ## ADVANCES IN MATERIALS ENGINEERING VOLUME 2 Edited By: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim #### Published by: **IIUM Press** International Islamic University Malaysia First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying. recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Md Abdul Maleque, Iskandar Idris Yaacob & Zahurin Halim: Advances in Materials Engineering ISBN: 978-967-418-168-0 Member of Majlis Penerbitan Ilmiah Malaysia -- MAPIM (Malaysian Scholarly Publishing Council) PRINTED BY: HUM PRINTING SDN.BHD. NO. 1, JALAN INDUSTRI BATU CAVES 1/3 TAMAN PERINDUSTRIAN BATU CAVES BATU CAVES CENTRE POINT 68100 BATU CAVES SELANGOR DARUL EHSAN TEL: +603-6188 1542 / 44 / 45 FAX: +603-6188 1543 EMAIL: iiumprinting@yahoo.com ### **Table of Content** | Chapter 1 Amorphous Coating of Iron Nickel Alloy 1 | | | |---|--|--| | Suryanto | | | | Chapter2 Characterization of Electroplated Nanocrystalline NiFe Alloy Films 7 | | | | Yusrini Marita and Iskandar I. Yaacob | | | | Chapter 3 Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution 13 | | | | Suryanto | | | | Chapter 4 Development of Carbon Doped TiO ₂ Photocatalyst for Pigment Degradation 19 | | | | Muh Rafiq Mirza Julaihi, Asep Sofwan Faturohman Alqap and Iis Sopyan | | | | Chapter 5 | | | | Dynamic Mechanical Analysis of Carbon Fibre Composites Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | | Chapter 6 | | | | Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles 31 | | | | Koay Mei Hyie and Iskandar I. Yaacob | | | | Chapter 7 | | | | Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the | | | | Formation of γ' Precipitates 37 | | | | Roslina Ismail and Iskandar I. Yaacob | | | | Chapter 8 Effect of Sintering Temperature on Protein Foaming-consolidation 43 | | | | Porous Alumina-tricalcium Phosphate Composites | | | | Ahmad Fadli and Iis Sopyan | | | | Chapter 9 | | | | Electrical Property of ITO Thin Film Deposited by Rf Magnetron Sputtering Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana | | | | Chapter 10 | | | | Electrochemical Study of Zinc Sclenide Thin Films Prepared for Photovoltaic Applications 55 Souad. A. Mohamad, A. K. Arof | | | | Chapter 11 | | | | Electrodeposited CdS / CdTe Solar Cells 61 | | | | Souad. A. Mohamad | | | | Chapter 12 | | | | Fabrication of Biomass Pellet from Mesocarp Fiber 7 Sharin Helim and Nurshazara Mahamad | | | | Zahurin Halim and Nurshazana Mohamad Chapter 13 | | | | Fabrication of Kenaf Sandwich Panel 68 | | | | Siti Khadijah Ahdul Rahman and Zahurin Halim | | | | | Zuraida Ahmad and Fariza Abdul Ra | ahman | |---|--|--------------------------------------| | Chapter 16 | | | | FTIR Analysis - Aluminium Hydroxide Treated with | 1 Silane Coupling Agent | 89 | | Noorasikin Samat, Nor Suhail | a Nor Saidi and Muhammad Saffuan | Sahat | | Chapter 17 | | | | Inorganic / Organic /Inorganic Double Junction Thin | r Film Solar Cells | 92 | | | Souad. A. Mol | namad | | Chapter 18 | | | | Investigation on The Effect of Ultra Violet on Cotto | n Albumen Composite | 96 | | Zahurin Halir | n, Zuraida Ahmad and Fauziah Md | Yusoi | | Chapter 19 | | | | Measurement of Oxygen Permeability in Bulk Alloy Constituent | s by Internal Oxidation of Dilute | 100 | | | Mohd Hanafi Bin Ani and Raihan O | thman | | Chapter 20 | violid Hanan Din Am and Kaman O | шша | | Natural Dye Coated Nanocrystalline Tio2 Electrode | Films for DSSCs | 106 | | Natural Dyc Coaled Nanocrystannic 1102 Electrode | Souad. A. Mohamad and Iraj | | | Chanton 21 | Souad, A. Mohamad and haj | Alaci | | Chapter 21 | | 109 | | Normal Deposition to Anomalous Deposition | C., | | | Cha-tuu 22 | Su | ryanto | | Chapter 22 | CD-1 | 115 | | Polymer Clay Nanocomposites: Part II- Synthesis of | Noor Azlina Hassan, Norita F | 115
Tassar | | Chapter 23 | | | | Production of Porous Calcium Phosphate Ceramics | through Polymeric Sponge Method | 120 | | Asep Sofwan Faturohma | n Alqap, Nur Ain Rakman, and Iis S | opyan | | Chapter 24 | | | | Silicone Doped Calcium Phosphate Powder Synthes Asen Sofwan Faturohman Ale | ized via Hydrothermal Method
jap, Iis Sopyan and Zuria Farhana Ki | 126
ushail | | Chapter 25 | jap, no sopjan ana zana i amana in | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Stress Analysis of Backend Metallization | | 132 | | Stress That years of Buckeria Metallization | Iskandar I. Yaacob and Goh Ch | | | Chapter 26 | iskandar i. Taacoo and Gon Cil | ia Dal | | Study on Metal Removing from Alumina Ceramics | | 137 | | <u>-</u> | Sutjipto and Muhyiddin Bin Budah@ | | | Agus Octor Eury | Jagupio ana irianyiaani Din Dudan(e | $\nu_i \cup uat$ | **78** 84 Fariza Abdul Rahman and Zuraida Ahmad Foam Impregnation Method for Artificial Bone Graft Application Foam Impregnation Method for Artificial Bone Graft Application Chapter 14 Chapter 15 : Study on the Effect of Drying Time : Study on the Effect of Sintering Temperature | Chapter 27 Surface Quality of Dipterocarpus Spp under Tropical Climate Change: Effect of Pre-Weathering 146 Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed | |---| | Chapter 28 | | Surface Topography of Sulphuric Treated Carbon Fibre 151 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | Chapter 29 | | Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films 157 | | Seoh Hian Teh and Iskandar I. Yaacob | | Chapter 30 | | Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions 164 | | Iskandar I. Yaacob | | Chapter 31 | | The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC 170 | | Noorasikin Samat, Alan Whittle and Mark Hoffman | | Chapter 32 | | The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC 175 | | Noorasikin Samat, Alan Whittle and Mark Hoffman | | Chapter 33 | | Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition 180 | | Agus Geter Edy Sutjipto, Sugrib Kumar Shaha | | Chapter 34 | | X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized 186 | | Zirconia Thin Film in Aqueous Acid Hydrofluoric | | Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita | | Chapter 35 | 194 Souad. A. Mohamad ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications # Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution Suryanto Faculty of Engineering – International Islamic University Malaysia : surya@iium.edu.my Keywords: Corrosion, Zinc, Potassium hydroxide. Abstract. The corrosion properties of zinc metal in aqueous potassium hydroxide (KOH) electrolyte have been studied. A three corrosion cell configuration was employed. A zinc foil of 99% purity and 1.15 mm in diameter was used as the working electrode. A nickel — plated mesh was used as the counter electrode. The reference electrode was Hg/HgO system. The concentration of aqueous KOH was varied from 1 M to 7 M. Surface roughness measurement and metallographic observation was also performed to support the corrosion rate data. The investigation shows that corrosion rate of zinc increases accordingly from 1M to 7M but the increasing rate is slower at 5M and above. Impedance measurement of KOH solution was also performed. #### Introduction Corrosion is commonly known as rust, an undesirable phenomena which destroys the luster and beauty of objects and shortens their life. Since ancient times, corrosion has affected not only the quality of daily lives of people, but also their technical progress. Corrosion is a natural and costly process. Whereas we can be only a silent spectator to the above process of destruction, corrosion can be prevented or at least controlled [1]. So, in order to control corrosion, we have to know the corrosion rates and all related information regarding the material and the process involved. Corrosion can be defined in many ways. Some definitions are very narrow and deal with a specific form of corrosions, while others are quite broad and cover many forms of corrosion. The general definition of corrode is to eat into or wear away gradually. Corrosion can be defined as a chemical or electrochemical reaction between a material, usually a metal, and its environment that produces a deterioration of the material and its properties. The environment consists of entire surrounding in contact with the material. The primary factors to describe the environment are the physical state (either in gas, liquid or solid), chemical compositions (constituents and concentrations) and temperature. Other factors can be the relative velocity of a solution (because of flow or agitation) and mechanical loads on the material, including residual stress within the material. When corrosion is discussed, it is important to think of a combination of a material and an environment. The corrosion behavior of a material cannot be described unless the environment in which the material is to be exposed is identified. Similarly, the aggressiveness of an environment cannot be described unless the material that is to be exposed to that environment is identified. In simple ways, we can say that the corrosion behavior of a material depends on the