ADVANCES IN MATERIALS ENGINEERING Volume 1 Edited By: Zahurin Halim Iskandar Idris Yaacob Md Abdul Maleque **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA ## ADVANCES IN MATERIALS ENGINEERING VOLUME 1 Edited By: Zahurin Halim Iskandar Idris Yaacob Md Abdul Maleque #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 © IIUM Press. IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978 -967-418-167-3 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: ITUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Sclangor Darul Ehsan ### **Table of Content** | Chapter 1 Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites | 1 | |---|----| | Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan | | | Chapter 2 Polymer Clay Nanocomposites: Part I | 6 | | Noor Azlina Hassan and Norita Hassan | | | Chapter 3 Effect of Processing Parameters on the Tensile Properties of TPNR Reinforced Short Carbon Fibre Composite | 11 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 4 Effect of Maleic Anhydride Polyethylene on Damping Properties of HDPE/EPDM Nanocomposite | 16 | | Hazleen Anuar, Nur Ayuni Jama, and Shamsul Bahri Abdul Razak | | | Chapter 5 Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid | 22 | | Hazleen Anuar and Muhammad Rejaul Kaiser | | | Chapter 6 Quality of Copper Film Electroplated on Silicon Wafer Using Different Current Densities | 28 | | Shahjahan Mridha | | | Chapter 7 Laser Nitriding of Titanium | 39 | | Shahjahan Mridha | | | Chapter 8 Composite Coating on Titanium Alloy Using High Power Laser | 45 | | Shahjahan Mridha | | | Chapter 9 Measurement of Moisture Absorption in Borophosphosilicate Glass (BPGS) Films | 50 | |--|-----| | Shahjahan Mridha and Shiau Khee Tang | | | Chapter 10 The Effect of Processing Parameter on Tensile Properties of Thermoplastic Natural Rubber Nanocomposites | 58 | | Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan | | | Chapter 11 Comparison of Mechanical Properties Between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite | 64 | | Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmadand Rozaidi Rasid | | | Chapter 12 Water Absorption of TPNR Reinforced Short Carbon Fibre Composite | 69 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 13 Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre | 74 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 14 Effect of Fibre Length on Tensile Properties of TPNR-Kenaf Fibre Composite | 79 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 15 Effect of Nanoclay on Mechanical Properties of PLA-Clay Nanocomposite | 84 | | Hazleen Anuar and Muhammad Rejaul Kaiser | | | Chapter 16 Extraction of Glucose From Kenaf Core by Using Chemical Pre – Treatment Process Nurhafizah Seeni Mohamed, Hazleen Amuar, Maizirwan Mel, Rashidi Othman, Nur Aisyah Mohd Norddin, Nur Aimi Mohd Nasir, Mohd Adlan Mustafa Kamalbhrin | 90 | | Chapter 17 Wear of Nitride Coating Produced by Ti-Al Melt Synthesis in Nitrogen Environment | 96 | | Shahjahan Mridha | | | Chapter 18 Effect of Dispersant on Protein Foaming-Consolidation Porous Alumina Containing Hydrothermal Derived Hydroxyapatite Nanopowder | 103 | Iis Sopyan and Ahmad Fadli | Chapter 19 Effect of Yolk Addition on Protein Foaming-Consolidation Porous Alumina-Calcium | 109 | |--|-----| | Phosphate Composites Its Sopyan and Ahmad Fadli | | | | | | Chapter 20 Investigation of the Effect of Starch Addition on Protein Foaming-Consolidation Porous Alumina Containing Hydroxyapatite Nanopowder | 115 | | Ahmad Fadli', Iis Sopyan, Nur Syahidah and Nur Nadia | | | Chapter 21 The Influence of Hydroxyapatite Loading on Protein Foaming-Consolidation Porous Alumina Sintered at 1300°C | 120 | | Ahmad Fadli 'and Iis Sopyan | | | Chapter 22 High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production Afiqah Afdzaluddin and Md Abdul Maleque | 126 | | Chapter 23 Porous Alumina-Hydroxyapatite Composites via Protein Foaming-Consolidation Method: Effect of HA Loading on Physical Properties Its Sopyan, Ahmad Fadli and Nur Izzati Zulkifli | 132 | | - · · · · · · · · · · · · · · · · · · · | | | Chapter 24 Preparation and Characterisation of Low Density Polyethylene/Layered Silicate Nanocomposites | 137 | | Salina Sharifuddin , Iskandar Idris Yaacob | | | Chapter 25 Effects of Sodium Dodecyl Benzene Sulphonate (NaDbs) on Li Imide-PMMA Based Solid Polymer Electrolyte | 144 | | Fauziah Mohd Yusof and Iskandar Idris Yaacob | | | Chapter 26 Effect of Milling Time on Mechanochemically Synthesized Nanohydroxyapatite Bioceramics | 149 | | Iis Sopyan, S. Adzila and M. Hamdi | | | | | | Chapter 27 Morphological Analysis of Mechanochemically Synthesized Nanohydroxyapatite Bioceramics | | | lis Sopyan, S. Adzila and M. Hamdi | 155 | | Chapter 28 | 160 | | Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis | ,00 | | S. Adzila, Iis Sopyan and M. Hamdi | | | Chapter 29 Thermal Profile Analysis of Composite Brake Rotor Md Abdul Maleque and Abdul Mu'min Adebisi | 165 | |--|-----| | Chapter 30 The Effect of Fibre Content on Thermal Property of Coir Fibre Reinforced Cement-Albumen Composite | 172 | | Faridatul Faezah Razali, Nur Humairah Abdul Razak and Zuraida Ahmad | | | Chapter 31 Pulsed Electrodeposition | 178 | | Suryanto | | | Chapter 32 Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite | 184 | | Suryanto | | | Chapter 33 Characterization and Utilization of Fly Ash | 189 | | Suryanto | | | Chapter 34 Workability of Coir Fibre- Reinforced Cement-Albumen Composite | 195 | | Nur Humairah Abdul Razak and Zuraida Ahmad | | | Chapter 35 Preparation of Rice Husk for Raw Material of Silicon | 201 | Hadi Purwanto and Nor Fazilah Mohd Selamat # High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production Atiqah Afdzaluddin and Md. Abdul Maleque 1, 2. Faculty of Engineering – International Islamic University Malaysia : atiqahafdzaluddin@yahoo.com; maleque@iium.edu.my/ Keywords: Fuel tank, High Density Polyethylene, weight, corrosion resistance, safety. Abstract. Towards development of automotive industrial, the weight and cost are the criteria performance for automotive material. Some automotive parts are made by material that has properties such as lighter weight as it reduces the cost of automotive manufacturing. The objective of this paper is study the fuel tank material emphasizing on the production of fuel tanks made from high density polyethylene (HDPE). The current study showed that HDPE fuel tank promotes lighter vehicle weight than steel fuel tank. Moreover, HDPE fuel tank inert or well resisted to the corrosive environments inside and outside of the tank. Even though the tooling cost of HDPE is high, it promotes safety condition in terms of improving fuel efficiency as well as green house gas emission and protects the environment. This paper will give an idea for the automotive and material engineer especially in Malaysia to develop new material with the aim of improving local vehicle performance. #### Introduction Light weight polymer material plays an important role towards the development of perfect automotive industrial material in terms of weight and cost criteria performance. Some automotive parts are made by material that has properties such as lighter weight as it reduces the cost of automotive manufacturing. When the part of vehicle is made with lighter material, this will improve the vehicle itself. According to Alvarado [1], conventionally, metallic fuel tanks were used as fuel tanks for motor vehicles. In recent years, however, fuel tanks made from thermoplastic synthetic resins have been in use due to thermoplastic resin materials being light in weight to satisfy increasing demands for vehicles that are light in weight, being free from rust, being easy to be molded into desired shapes. In general, fuel tank is safe container for flammable. Fuel tanks are the ones who hold and transfers fuel from which the whole machine generates its energy. It acts as an integral part of the vehicle's fuel system [2]. Since the fuel cost increases the automakers are taking a harder look to replace new material in part of automotive car. According to Alvarado, the usage of plastic fuel tank in automotive industry has been increased from year by year. In 1993, the market represents 70-90 % in Europe and 5% in Japan compared to in 1990 which only 22.25% in market. The replacement of steel tank with plastic tank is still keeps on increasing due to its durability toward vehicle efficiency. This is because The European Plastic Fuel Tanks and Systems Manufacturers Association has claimed that "more than 95% of fuel tanks produced in Europe are made of plastics. This high penetration rate is explained by the strong benefits brought by plastic solutions in this application" [3]. Seeing, as the material for fuel tank is needs to be replaced with lighter material, HDPE has been the resin of choice for plastic gas tanks because of its physical and chemical