ADVANCES IN MATERIALS ENGINEERING
VOLUME 1

Edited By:

Zahurin Halim
Iskandar Idris Yaacob
Md Abdul Maleque

IUM Press
Table of Content

Chapter 1
Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites
Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan

Chapter 2
Polymer Clay Nanocomposites: Part I
Noor Azlina Hassan and Norita Hassan

Chapter 3
Effect of Processing Parameters on the Tensile Properties of TPNR Reinforced Short Carbon Fibre Composite
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 4
Effect of Maleic Anhydride Polyethylene on Damping Properties of HDPE/EPDM Nanocomposite
Hazleen Anuar, Nur Ayuni Jama, and Shamsul Bahri Abdul Razak

Chapter 5
Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid
Hazleen Anuar and Muhammad Rejaul Kaiser

Chapter 6
Quality of Copper Film Electroplated on Silicon Wafer Using Different Current Densities
Shahjahan Mridha

Chapter 7
Laser Nitriding of Titanium
Shahjahan Mridha

Chapter 8
Composite Coating on Titanium Alloy Using High Power Laser
Shahjahan Mridha
Chapter 9
Measurement of Moisture Absorption in Borophosphosilicate Glass (BPGS) Films
Shahjahan Mridha and Shian Khee Tang

Chapter 10
The Effect of Processing Parameter on Tensile Properties of Thermoplastic Natural Rubber Nanocomposites
Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan

Chapter 11
Comparison of Mechanical Properties Between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite
Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 12
Water Absorption of TPNR Reinforced Short Carbon Fibre Composite
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 13
Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 14
Effect of Fibre Length on Tensile Properties of TPNR-Kenaf Fibre Composite
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 15
Effect of Nanoclay on Mechanical Properties of PLA-Clay Nanocomposite
Hazleen Anuar and Muhammad Rejaul Kaiser

Chapter 16
Extraction of Glucose From Kenaf Core by Using Chemical Pre – Treatment Process
Nurhafizah Seeni Mohamed, Hazleen Anuar, Maizirwan Mel, Rashidi Othman, Nur Aisyah Mohd Norddin, Nur Aimi Mohd Nasir, Mohd Adlan Mustafa Kamalbhrin

Chapter 17
Wear of Nitride Coating Produced by Ti-Al Melt Synthesis in Nitrogen Environment
Shahjahan Mridha

Chapter 18
Effect of Dispersant on Protein Foaming-Consolidation Porous Alumina Containing Hydrothermal Derived Hydroxyapatite Nanopowder
Iis Sopyan and Ahmad Fadli
Chapter 19
Effect of Yolk Addition on Protein Foaming-Consolidation Porous Alumina-Calcium Phosphate Composites

Iis Sopyan and Ahmad Fadli

Chapter 20
Investigation of the Effect of Starch Addition on Protein Foaming-Consolidation Porous Alumina Containing Hydroxyapatite Nanopowder

Ahmad Fadli', Iis Sopyan, Nur Syahidah and Nur Nadia

Chapter 21
The Influence of Hydroxyapatite Loading on Protein Foaming-Consolidation Porous Alumina Sintered at 1300°C

Ahmad Fadli' and Iis Sopyan

Chapter 22
High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production

Afiqah Afzaluddin and Md Abdul Maleque

Chapter 23
Porous Alumina-Hydroxyapatite Composites via Protein Foaming-Consolidation Method: Effect of HA Loading on Physical Properties

Iis Sopyan, Ahmad Fadli and Nur Izzati Zulkifli

Chapter 24
Preparation and Characterisation of Low Density Polyethylene/Layered Silicate Nanocomposites

Salina Sharifuddin, Iskandar Idris Yaacob

Chapter 25
Effects of Sodium Dodecyl Benzene Sulphonate (NaDbs) on Li Imide-PMMA Based Solid Polymer Electrolyte

Faniziah Mohd Yusof and Iskandar Idris Yaacob

Chapter 26
Effect of Milling Time on Mechanochemically Synthesized Nanohydroxyapatite Bioceramics

Iis Sopyan, S. Adzila and M. Hamdi

Chapter 27
Morphological Analysis of Mechanochemically Synthesized Nanohydroxyapatite Bioceramics

Iis Sopyan, S. Adzila and M. Hamdi

Chapter 28
Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis

S. Adzila, Iis Sopyan and M. Hamdi
Chapter 29
Thermal Profile Analysis of Composite Brake Rotor

Md Abdul Maleque and Abdul Mu'min Adebisi

Chapter 30
The Effect of Fibre Content on Thermal Property of Coir Fibre Reinforced Cement-Albumen Composite

Faridaul Faezah Razali, Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 31
Pulsed Electrodeposition

Suryanto

Chapter 32
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite

Suryanto

Chapter 33
Characterization and Utilization of Fly Ash

Suryanto

Chapter 34
Workability of Coir Fibre-Reinforced Cement-Albumen Composite

Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 35
Preparation of Rice Husk for Raw Material of Silicon

Hadil Purwanto and Nor Fazilah Mohd Selamat
High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production

Atiqah Afidzaluddin and Md. Abdul Maleque

Faculty of Engineering – International Islamic University Malaysia

✉️: atiqahafidzaluddin@yahoo.com; maleque@iium.edu.my

Keywords: Fuel tank, High Density Polyethylene, weight, corrosion resistance, safety.

Abstract. Towards development of automotive industrial, the weight and cost are the criteria performance for automotive material. Some automotive parts are made by material that has properties such as lighter weight as it reduces the cost of automotive manufacturing. The objective of this paper is study the fuel tank material emphasizing on the production of fuel tanks made from high density polyethylene (HDPE). The current study showed that HDPE fuel tank promotes lighter vehicle weight than steel fuel tank. Moreover, HDPE fuel tank inert or well resisted to the corrosive environments inside and outside of the tank. Even though the tooling cost of HDPE is high, it promotes safety condition in terms of improving fuel efficiency as well as green house gas emission and protects the environment. This paper will give an idea for the automotive and material engineer especially in Malaysia to develop new material with the aim of improving local vehicle performance.

Introduction

Light weight polymer material plays an important role towards the development of perfect automotive industrial material in terms of weight and cost criteria performance. Some automotive parts are made by material that has properties such as lighter weight as it reduces the cost of automotive manufacturing. When the part of vehicle is made with lighter material, this will improve the vehicle itself. According to Alvarado [1], conventionally, metallic fuel tanks were used as fuel tanks for motor vehicles. In recent years, however, fuel tanks made from thermoplastic synthetic resins have been in use due to thermoplastic resin materials being light in weight to satisfy increasing demands for vehicles that are light in weight, being free from rust, being easy to be molded into desired shapes.

In general, fuel tank is safe container for flammable. Fuel tanks are the ones who hold and transfers fuel from which the whole machine generates its energy. It acts as an integral part of the vehicle’s fuel system [2]. Since the fuel cost increases the automakers are taking a harder look to replace new material in part of automotive car. According to Alvarado, the usage of plastic fuel tank in automotive industry has been increased from year by year. In 1993, the market represents 70-90% in Europe and 5% in Japan compared to in 1990 which only 22.25% in market. The replacement of steel tank with plastic tank is still keeps on increasing due to its durability toward vehicle efficiency. This is because The European Plastic Fuel Tanks and Systems Manufacturers Association has claimed that “more than 95% of fuel tanks produced in Europe are made of plastics. This high penetration rate is explained by the strong benefits brought by plastic solutions in this application” [3]. Seeing, as the material for fuel tank is needs to be replaced with lighter material, HDPE has been the resin of choice for plastic gas tanks because of its physical and chemical