Table of Content

Chapter 1
Amorphous Coating of Iron Nickel Alloy
Suryanto

Chapter 2
Characterization of Electroplated Nanocrystalline NiFe Alloy Films
Yusrini Marita and Iskandar I. Yaacob

Chapter 3
Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution
Suryanto

Chapter 4
Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation
Muh Rafiq Mirza Julaihi, Asep Sofwan Faturrahman Alqap and Iis Sopyan

Chapter 5
Dynamic Mechanical Analysis of Carbon Fibre Composites
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 6
Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles
Koay Mei Hye and Iskandar I. Yaacob

Chapter 7
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ' Precipitates
Roslina Ismail and Iskandar I. Yaacob

Chapter 8
Effect of Sintering Temperature on Protein Foaming-consolidation
Porous Alumina-tricalcium Phosphate Composites
Ahmad Fadli and Iis Sopyan

Chapter 9
Electrical Property of ITO Thin Film Deposited by RF Magnetron Sputtering
Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana

Chapter 10
Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications
Souad. A. Mohamad, A. K. Arof

Chapter 11
Electrodeposited CdS / CdTe Solar Cells
Souad. A. Mohamad

Chapter 12
Fabrication of Biomass Pellet from Mesocarp Fiber
Zahirin Halim and Nurshazana Mohamad

Chapter 13
Fabrication of Kenaf Sandwich Panel
Siti Khadijah Abdul Rahman and Zahirin Halim
Chapter 14
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Drying Time 78
Fariza Abdul Rahman and Zuraida Ahmad

Chapter 15
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Sintering Temperature 84
Zuraida Ahmad and Fariza Abdul Rahman

Chapter 16
FTIR Analysis - Aluminium Hydroxide Treated with Silane Coupling Agent 89
Noorasikin Samat, Nor Suhaila Nor Saidi and Muhammad Saffuan Sahat

Chapter 17
Inorganic / Organic /Inorganic Double Junction Thin Film Solar Cells 92
Souad. A. Mohamad

Chapter 18
Investigation on The Effect of Ultra Violet on Cotton Albumen Composite 96
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 19
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent 100
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Natural Dye Coated Nanocrystalline TiO2 Electrode Films for DSSCs 106
Souad. A. Mohamad and Iraj Alaei

Chapter 21
Normal Deposition to Anomalous Deposition 109
Suryanto

Chapter 22
Polymer Clay Nanocomposites: Part II- Synthesis of Polymer Nanocomposites 115
Noor Azlina Hassan, Norita Hassan

Chapter 23
Production of Porous Calcium Phosphate Ceramics through Polymeric Sponge Method 120
Asep Sofwan Faturihoeman Alqap, Nur Ain Rakman, and Iis Sopyan

Chapter 24
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method 126
Asep Sofwan Faturihoeman Alqap, Iis Sopyan and Zuria Farhana Kushaili

Chapter 25
Stress Analysis of Backend Metallization 132
Iskandar I. Yaacob and Goh Chia Lan

Chapter 26
Study on Metal Removing from Alumina Ceramics 137
Agus Geter Edy Sutjipto and Muhyiddin Bin Budah@Udah
Chapter 27
Surface Quality of *Dipterocarpus Spp* under Tropical Climate Change: Effect of Pre-Weathering
Mohd Khairin Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films
Scob Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition
Agus Geter Edy Sutjipto, Sugrib Kumar Shaha

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications
Souad. A. Mohamad
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric

Sukreen Hana Herman¹, Mohd Hanafi Ani², and Susumu Horita³
¹Faculty of Electrical Engineering – Universiti Teknologi MARA
²Faculty of Engineering – International Islamic University Malaysia
³School of Materials Science – Japan Advanced Institute of Science and Technology
✉: hana1617@salam.uitm.edu.my, mhanafi@iiu.edu.my

Keywords: Yttria-Stabilized Zirconia (YSZ), Acid hydrofluoric (HF), Surface chemical states, X-ray photoelectron spectroscopy (XPS).

Abstract. This chapter discusses on the surface chemical states of yttria-stabilized zirconia (YSZ) thin films that were treated by aqueous acid hydrofluoric (HF). The magnetron-sputtered YSZ thin films on glass substrates were cleaned in ethanol and dipped in 5% HF solution before being rinsed in either in deionized water (DIW) or ethanol. The surface chemical state of the YSZ thin films were characterized by x-ray photoelectron spectroscopy (XPS). XPS spectra showed that after the HF-dipping, the ratio of the yttrium, Y content of the YSZ thin film surface increased, which probably due to selective etching of zirconium and/or re-adsorption of Y atoms after the etching. From XPS results also, we found that by rinsing with DIW, the excess Y content as a result from the HF-dipping will be removed, but will remain if the surface is rinsed by ethanol solution.

Introduction

Yttria-stabilized zirconia [(ZrO₂)₁₋₃(Y₂O₃)ₓ : YSZ], is a zirconium-oxide based material, in which the particular structure of zirconium oxide (ZrO₂) is made stable at room temperature by addition of yttrium oxide (Y₂O₃). YSZ is usually used in solid oxide fuel cell [1, 2], thermal barrier coating[3], as the high-k gate dielectric material[4-6], and also in sensor application[7]. In our work, we have reported the use of YSZ thin film as a seed layer for low-temperature poly-Si growth[8]. We found that the chemical treatment of the YSZ thin films prior to the Si film deposition played an important role in the crystallization of the deposited poly-Si thin film. In this paper, we discuss the chemical states of the YSZ thin film surfaces that undergo the wet chemical processes based on the results of x-ray photoelectron spectroscopy, XPS.