ADVANCES IN MATERIALS ENGINEERING
VOLUME 1

Edited By:

Zahurin Halim
Iskandar Idris Yaacob
Md Abdul Maleque
Table of Content

Chapter 1
Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites
Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan
1

Chapter 2
Polymer Clay Nanocomposites: Part I
Noor Azlina Hassan and Norita Hassan
6

Chapter 3
Effect of Processing Parameters on the Tensile Properties of TPNR Reinforced Short Carbon Fibre Composite
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid
11

Chapter 4
Effect of Maleic Anhydride Polyethylene on Damping Properties of HDPE/EPDM Nanocomposite
Hazleen Anuar, Nur Ayuni Jama, and Shamsul Bahri Abdul Razak
16

Chapter 5
Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid
Hazleen Anuar and Muhammad Rejaul Kaiser
22

Chapter 6
Quality of Copper Film Electroplated on Silicon Wafer Using Different Current Densities
Shahjahan Mridha
28

Chapter 7
Laser Nitriding of Titanium
Shahjahan Mridha
39

Chapter 8
Composite Coating on Titanium Alloy Using High Power Laser
Shahjahan Mridha
45
Chapter 9
Measurement of Moisture Absorption in Borophosphosilicate Glass (BPGS) Films

Shahjahan Mridha and Shian Khee Tang

50

Chapter 10
The Effect of Processing Parameter on Tensile Properties of Thermoplastic Natural Rubber Nanocomposites

Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan

58

Chapter 11
Comparison of Mechanical Properties Between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite

Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid

64

Chapter 12
Water Absorption of TPNR Reinforced Short Carbon Fibre Composite

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

69

Chapter 13
Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

74

Chapter 14
Effect of Fibre Length on Tensile Properties of TPNR-Kenaf Fibre Composite

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

79

Chapter 15
Effect of Nanoclay on Mechanical Properties of PLA-Clay Nanocomposite

Hazleen Anuar and Muhammad Rejaul Kaiser

84

Chapter 16
Extraction of Glucose From Kenaf Core by Using Chemical Pre – Treatment Process

Nurhaizah Senei Mohamed, Hazleen Anuar, Maizirwan Mel, Rashdi Othman, Nur Aisyah Mohd Nordin, Nur Aimil Mohd Nasir, Mohd Adlan Mustafa Kamalbhvin

90

Chapter 17
Wear of Nitride Coating Produced by Ti-Al Melt Synthesis in Nitrogen Environment

Shahjahan Mridha

96

Chapter 18
Effect of Dispersant on Protein Foaming-Consolidation Porous Alumina Containing Hydrothermal Derived Hydroxyapatite Nanopowder

Irs Sopyan and Ahmad Fadli

103
Chapter 19
Effect of Yolk Addition on Protein Foaming-Consolidation Porous Alumina-Calcium Phosphate Composites

Iis Sopyan and Ahmad Fadli

Chapter 20
Investigation of the Effect of Starch Addition on Protein Foaming-Consolidation Porous Alumina Containing Hydroxyapatite Nanopowder

Ahmad Fadli*, Iis Sopyan, Nur Syahidah and Nur Nadia

Chapter 21
The Influence of Hydroxyapatite Loading on Protein Foaming-Consolidation Porous Alumina Sintered at 1300°C

Ahmad Fadli and Iis Sopyan

Chapter 22
High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production

Afiqah Afdzaluddin and Md Abdul Maleque

Chapter 23
Porous Alumina-Hydroxyapatite Composites via Protein Foaming-Consolidation Method: Effect of HA Loading on Physical Properties

Iis Sopyan, Ahmad Fadli and Nur Izzati Zulkifli

Chapter 24
Preparation and Characterisation of Low Density Polyethylene/Layered Silicate Nanocomposites

Salina Sharifuddin, Iskandar Idris Yaacob

Chapter 25
Effects of Sodium Dodecyl Benzene Sulphonate (NaDbs) on Li Imide-PMMA Based Solid Polymer Electrolyte

Fauziah Mohd Yusof and Iskandar Idris Yaacob

Chapter 26
Effect of Milling Time on Mechanochemically Synthesized Nanohydroxyapatite Bioceramics

Iis Sopyan, S. Adzila and M. Hamdi

Chapter 27
Morphological Analysis of Mechanochemically Synthesized Nanohydroxyapatite Bioceramics

Iis Sopyan, S. Adzila and M. Hamdi

Chapter 28
Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis

S. Adzila, Iis Sopyan and M. Hamdi
Chapter 29
Thermal Profile Analysis of Composite Brake Rotor

Md Abdul Maleque and Abdul Mu'min Adebisi

Chapter 30
The Effect of Fibre Content on Thermal Property of Coir Fibre Reinforced Cement-Albumen Composite

Faridatul Faezah Razali, Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 31
Pulsed Electrodeposition

Suryanto

Chapter 32
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite

Suryanto

Chapter 33
Characterization and Utilization of Fly Ash

Suryanto

Chapter 34
Workability of Coir Fibre-Reinforced Cement-Albumen Composite

Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 35
Preparation of Rice Husk for Raw Material of Silicon

Hadi Purwanto and Nor Fazilah Mohd Selamat
Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre

Hazleen Anuar¹, Sahrim Hj. Ahmad² and Rozaidi Rasid³
¹Faculty of Engineering – International Islamic University Malaysia
²³Fakulti Sains dan Teknologi – Universiti Kebangsaan Malaysia
✉ hazleen@iiu.edu.my ; bsha@gmail.com ; rozaidi@ukm.my

Keywords: Short carbon fibre, oxidative treatment, tensile strength, surface roughness, interlocking, thermoplastic natural rubber.

Abstract. Synthetic carbon fibres have long been available for various applications. For optimum performance in-service, surface treatment of carbon fibre is essential. This study was undertaken to investigate the effect of short carbon fibre (CF) loading and oxidative treatment employed on the tensile strength of thermoplastic natural rubber (TPNR) composites. Scanning electron micrograph (SEM) revealed the rough surface of sulphuric acid treated carbon fibre. The enhanced surface area of carbon fibre promotes mechanical interlocking between treated carbon fibre and TPNR matrix, thus supporting the increment in tensile strength.

Introduction
In reinforced short carbon fibre, physical properties that include surface area and porosity are important parameters as it determines the extent of the interface in the composite. The surface of untreated carbon fibres can be generally described as smooth. The smooth surface was due to annealing of surface defects and closure of pores at high temperature during production of carbon fibre.

Chemical properties of carbon fibre surface also affect the interface with matrix. The carbon atoms of a carbonaceous material are in hexagonal rings, which are polycondensed and form aromatic carbon lamellae. The structure for aromatic layer and basal planes are imperfect and contains some defects such as stacking faults, single and multiple atom vacancies, and dislocation. The carbon atoms, which located at grain boundaries or edges of lamellae are more reactive than the basal plane carbon atoms and contain the active sites. This active site is an important characteristic for carbon reactivity [1].

The interlaminar shear strength of carbon fibre reinforced composites is related to the fibre-matrix interfacial bonding. The bond can be in the form of physical which is due to mechanical interlocking between the fibre-matrix or chemical bonds between the matrix and the active sites on the fibre surface. The active sites are located at the edges of the crystallite basal planes emerging at the surface, structural defects such as vacancies, dislocations or steps in the basal planes oriented parallel to the fibre axis [3]. Mechanical interlocking is determined by fibre surface area, the surface porosity and surface roughness. The fibre surface morphology is dependent on the precursor material where PAN-based fibres exhibited smaller surface area with smooth surface and circular cross section.