ADVANCES IN MATERIALS ENGINEERING
Volume 1

Edited By:
Zahurin Halim
Iskandar Idris Yaacob
Md Abdul Maleque

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCES IN MATERIALS ENGINEERING
VOLUME 1

Edited By:

Zahurin Halim
Iskandar Idris Yaacob
Md Abdul Maleque
Table of Content

Chapter 1
Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites

Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan

Chapter 2
Polymer Clay Nanocomposites: Part I

Noor Azlina Hassan and Norita Hassan

Chapter 3
Effect of Processing Parameters on the Tensile Properties of TPNR Reinforced Short Carbon Fibre Composite

Hazleen Aminar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 4
Effect of Maleic Anhydride Polyethylene on Damping Properties of HDPE/EPDM Nanocomposite

Hazleen Aminar, Nur Ayuni Jama, and Shamsul Bahri Abdul Razak

Chapter 5
Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid

Hazleen Aminar and Muhammad Rejaul Kaiser

Chapter 6
Quality of Copper Film Electroplated on Silicon Wafer Using Different Current Densities

Shahjahan Mridha

Chapter 7
Laser Nitriding of Titanium

Shahjahan Mridha

Chapter 8
Composite Coating on Titanium Alloy Using High Power Laser

Shahjahan Mridha
Chapter 9
Measurement of Moisture Absorption in Borophosphosilicate Glass (BPGS) Films

Shahjahan Mridha and Shian Khee Tang

Chapter 10
The Effect of Processing Parameter on Tensile Properties of Thermoplastic Natural Rubber Nanocomposites

Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan

Chapter 11
Comparison of Mechanical Properties Between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite

Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 12
Water Absorption of TPNR Reinforced Short Carbon Fibre Composite

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 13
Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 14
Effect of Fibre Length on Tensile Properties of TPNR-Kenaf Fibre Composite

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 15
Effect of Nanoclay on Mechanical Properties of PLA-Clay Nanocomposite

Hazleen Anuar and Muhammad Rejaul Kaiser

Chapter 16
Extraction of Glucose From Kenaf Core by Using Chemical Pre – Treatment Process

Nurhasfizah Seeni Mohamed, Hazleen Anuar, Maizirwan Mel, Rashidi Othman, Nur Aisyah Mohd Norddin, Nur Aini Mohd Nasir, Mohd Adlan Mustafa Kamalbhin

Chapter 17
Wear of Nitride Coating Produced by Ti-Al Melt Synthesis in Nitrogen Environment

Shahjahan Mridha

Chapter 18
Effect of Dispersant on Protein Foaming-Consolidation Porous Alumina Containing Hydrothermal Derived Hydroxyapatite Nanopowder

Iis Sopyan and Ahmad Fadli
Chapter 19
Effect of Yolk Addition on Protein Foaming- Consolidation Porous Alumina-Calcium Phosphate Composites
Iis Sopyan and Ahmad Fadli

Chapter 20
Investigation of the Effect of Starch Addition on Protein Foaming- Consolidation Porous Alumina Containing Hydroxyapatite Nanopowder
Ahmad Fadli', Iis Sopyan, Nur Syahidah and Nur Nadia

Chapter 21
The Influence of Hydroxyapatite Loading on Protein Foaming- Consolidation Porous Alumina Sintered at 1300°C
Ahmad Fadli and Iis Sopyan

Chapter 22
High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production
Afiqah Afdzahuddin and Md Abdul Maleque

Chapter 23
Porous Alumina-Hydroxyapatite Composites via Protein Foaming- Consolidation Method: Effect of HA Loading on Physical Properties
Iis Sopyan, Ahmad Fadli and Nur Izzati Zulkifli

Chapter 24
Preparation and Characterisation of Low Density Polyethylene/Layered Silicate Nanocomposites
Salina Sharifuddin, Iskandar Idris Yaacob

Chapter 25
Effects of Sodium Dodecyl Benzene Sulphonate (NaDbs) on Li Imide-PMMA Based Solid Polymer Electrolyte
Fauziah Mohd Yusof and Iskandar Idris Yaacob

Chapter 26
Effect of Milling Time on Mechanochemically Synthesized Nanohydroxyapatite Bioceramics
Iis Sopyan, S. Adzila and M. Hamdi

Chapter 27
Morphological Analysis of Mechanochemically Synthesized Nanohydroxyapatite Bioceramics
Iis Sopyan, S. Adzila and M. Hamdi

Chapter 28
Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis
S. Adzila, Iis Sopyan and M. Hamdi
Chapter 29
Thermal Profile Analysis of Composite Brake Rotor
Md Abdul Maleque and Abdul Mu'min Adebiyi

Chapter 30
The Effect of Fibre Content on Thermal Property of Coir Fibre Reinforced Cement-Albumen Composite
Faridaul Faizah Razali, Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 31
Pulsed Electrodeposition
Suryanto

Chapter 32
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
Suryanto

Chapter 33
Characterization and Utilization of Fly Ash
Suryanto

Chapter 34
Workability of Coir Fibre- Reinforced Cement-Albumen Composite
Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 35
Preparation of Rice Husk for Raw Material of Silicon
Hadi Purwanto and Nor Fazilah Mohd Selamat
Comparison of Mechanical Properties between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite

Noor Azlina Hassan¹, Norita Hassan², Sahrim Hj. Ahmad³ and Rozaidi Rasid⁴
¹ Faculty of Engineering – International Islamic University Malaysia
², ³, ⁴ Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
✉: noorzalina_hassan@iitm.edu.my

Keywords: Mechanical properties, short carbon fibers, untreated fibers, treated fibers.

Abstract. Reinforced short carbon fiber with untreated and treated sulphuric acid thermoplastic natural rubber (TPNR) composite was prepared via melt blending method using Thermo Haake (internal mixer). The aim of the study was to make the comparison on its mechanical properties. The mechanical properties were studied at various fibers loading 5, 10, 15, 20 vol%. The results showed that mechanical properties of TPNR composite with treated carbon fibers were increased compared to the untreated carbon fibers. Observation from scanning electron microscopy (SEM) micrograph showed the treated carbon fibers improved the adhesion of TPNR matrix and fibers.

Introduction

Properties of composites materials critically depend on the matrix, the reinforcement and also the interaction between the matrix and the reinforcement. Short carbon fiber has long been used as reinforcement where it offers high strength, stiffness, lower weight, outstanding fatigue characteristic, chemical inertness, do not suffer from stress corrosion or stress rupture failure [7].

Oxidative surface treatment of carbon fibers will add the functional groups to the carbon fibers and it will contribute to the stiffness at the surface areas [9]. Functional groups such as COOH may contribute to the highest adhesion to the carbon surface [10]. The effectiveness of this adhesion through the functional groups was increased by the increasing of the oxygen atoms. Studies have shown that surface treatment is able to increase the roughness of carbon fiber and promotes better fiber matrix bonding [9].