VOLUME 2 # RECENT ACHIEVEMENTS IN DYNAMICAL SYSTEMS Proceedings of Department of Computational and Theoretical Sciences, Faculty of Science, IIUM Chief Editor: Farrukh Mukhamedov Editors : Nasir Ganikhodjaev : Mansoor Saburov ### Proceedings of Department of Computational and Theoretical Sciences, Faculty of Science, IIUM # Recent Achievements in Dynamical Systems Chief Editor: Farrukh Mukhamedov Editors: Nasir Ganikhodjaev Mansoor Saburov Vol. 2 #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Farrukh Mukhamedov, Nasir Ganikhodjaev & Mansoor Saburov Recent Achievements in Dynamical Systems Farrukh Mukhamedov, Nasir Ganikhodjaev & Mansoor Saburov ISBN: 978-967-418-201-4 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan #### Contents #### Part I. Quadratic Operators and Their Dynamics | Farrukh Mukhamedov, Abduaziz Abduganiev, Maksut Mukhamedov, On Dynamics of a Class of Quantum Quadratic Operators on $M_2(C)$. | 2 | |---|----| | Mansoor Saburov, On Ergodic Principle for Quadratic Volterra
Operators. | 9 | | Mansoor Saburov, Fixed Point of Compositions of Volterra Operators. | 15 | | Farrukh Mukhamedov, Afifah Hanum Bt Mohd. Jamal, Classification of ξ ^s - Quadratic Stochastic Operators in 2D-Simplex. | 21 | | Farrukh Mukhamedov, Mansoor Saburov, Afifah Hanum Bt Mohd. Jamal, Dynamics of ξ^s - Quadratic Stochastic Operators in 2D-Simplex. | 29 | | Farrukh Mukhamedov, Mansoor Saburov, Some Examples of Lotka-Volterra Type Models. | 34 | | Nasir Ganikhodjaev, Makhsuma Usmanova, On Linearization of Quadratic Stochastic Operators. | 40 | | Nasir Ganikhodjaev, Continual Family of Ergodic Non-Homogeneous Markov Chains. | 47 | | Rasul Ganikhodjaev, Farrukh Mukhamedov, Mansoor Saburov, On G-Decomposition of Matrices. | 53 | | Farrukh Mukhamedov, On L_1 -Weak Ergodocity of Nonhomogeneous Discrete Markov Processes | 59 | | Inomjon Ganiev, Farrukh Mukhamedov, On Measurable Bundles of C*-Dynamical Systems. | 65 | | Inomjon Ganiev, Farrukh Mukhamedov, A Weighted Ergodic Theorem for Contractions Defined on Banach-Kantorovich Lattice. | 71 | #### Part II. Dynamical Systems Arising From Physical Models | Farrukh Mukhamedov, Mansoor Saburov, Dynamical Systems of XY-Models On A Cayley Tree Of Order Two. | 78 | |---|-----| | Farrukh Mukhamedov, Mansoor Saburov, Dynamical Systems of XY-Models On A Cayley Tree Of Order Three. | 85 | | Farrukh Mukhamedov, Mansoor Saburov, Dynamical Systems of Ising Model on a Cayley Tree. | 91 | | Nasir Ganikhodjaev, Siti Fatimah Zakaria, Phase Diagram of The Ising Model with Nearest-Neighbor Interactions. | 98 | | Nasir Ganikhodjaev, Siti Fatimah Zakaria, Ising Model on a General Cayley Tree with Competing Next-Nearest-Neighbour Interactions. | 107 | | Pah Chin Hee, Rukiah Ali, Ising Model with Competing Interactions on Cayley Tree of Order Four | 118 | | Massimo Ostilli, Langevin Dynamics for a New Class of Mean-Field Ising Models. | 125 | | Farrukh Mukhamedov, Utkir Rozikov, Free Energy of The Ising Model with Competing Interactions on a Cayley Tree. | 133 | | A. Benseghir, B.A. Umarov, A. Messikh, Modulational Instability In Salemo Model. | 141 | | Nasir Ganikhodjaev, Seyit Temir, On Potts Model with Triple Interactions. | 146 | | Nasir Ganikhodjaev, Ashraf Mohamed Nawi, Mohd Hirzie Mohd
Rodzhan, Phase Diagram Of The Potts Model with External Magnetic
Field. | 152 | | Nasir Ganikhodjaev, Fatimah Abdul Razak, A Correlation Inequality for Potts Model. | 160 | | Nasir Ganikhodjaev, Ashraf Mohamed Nawi, A Nonlinear Dynamic
System Arising in Potts Model. | 167 | | Farrukh Mukhamedov, On Existence of Phase Transition for One Dimensional P-Adic Countable State Potts Model. | 177 | |--|-----| | B.A. Umarov, A. Bouketir, Strongly Localized Models In Two-Component Discrete Media With Cubic-Quintic Nonlinearity. | 184 | | Part III. Nonlinear Dynamical Systems | | | Farrukh Mukhamedov, Wan Nur Fairuz Alwani Wan Rozali, On P-Adic Generalized Logistic Dynamical System. | 196 | | Farrukh Mukhamedov, Mansoor Saburov, On Equation $x^q = a$ over Q_p . | 201 | | Farrukh Mukhamedov, Mansoor Saburov, On Unification of The Strong
Convergence Theorems for a Finite Family Of TAN Mappings in
Banach Spaces. | 207 | | Part IV. Graphs And Networks | | | Pah Chin Hee, Single Polygon Counting for Two Fixed Nodes on a Cayley Tree of Order 2. | 214 | | Khikmat Saburov, Mansoor Saburov, Every 3-Connected $K_{13}Z_6$ -Free Graph is Hamiltonian. | 219 | | Khikmat Saburov, Mansoor Saburov, Relation Between $K_{1,3}P_7$ -Free and $K_{1,3}N_{1,1,1}$ -Free Graphs. | 224 | | Khikmat Saburov, Mansoor Saburov, Hamiltonicity Of $K_{1,3}B_{i,7-i}$ -Free Graphs. | 232 | | Saadi Bin Ahmad Kamtuddin, Nor Azura Md Ghani, Choong-Yeun Liong And Abdul Aziz Jemain, Artificial Neural Network Implementation on Firearm Recognition System via Ring Firing Pin Impression Image. | 242 | | Pah Chin Hee Dirichlet's Theorem And Prime Gan Statistics | 256 | ## ON P-ADIC GENERALIZED LOGISTIC DYNAMICAL SYSTEM #### Farrukh Mukhamedov¹ and Wan Nur Fairuz Alwani Wan Rozali² Kulliyyah Of Science, Computational And Theoretical Sciences, International Islamic University Malaysia E-mail: ¹far75m@gmail.com, ²fairuzalwani@gmail.com #### Abstract Applications of p-adic numbers in p-adic mathematical physics, quantum mechanics stimulated increasing interest in the study of p-adic dynamical system. One of the interesting p-adic dynamical system is p-adic logistic map. It is known such a mapping is chaotic. In the present paper, we consider its cubic generalization namely we study a dynamical system of the form $f(x) = ax(1-x^2)$. The paper is devoted to the investigation of trajectory of the given system. We investigate the generalized logistic dynamical system with respect to parameter a. For the value of parameter, we consider the case when $|a|_p < 1$. In this case, we study the existence of the fixed points and periodic points for every prime number, p. Not only that, their behavior also being investigated whether such fixed points and periodic points are attracting, repelling or neutral. Moreover, we describe the Siegel discs of the system, since the structure of the orbits of the system is related to the geometry of the p-adic Siegel discs. Keywords: p-adic; Siegel disc; attractors; trajectory; chaotic. #### Introduction Applications of p-adic numbers in p-adic mathematical physics, quantum mechanics [2] and many others [3],[7] stimulated increasing interest in the study of p-adic dynamical systems. P-adic numbers were first introduced by the German mathematician K.Hensel. During a century after their discovery they were considered mainly objects of pure mathematics. The most studied discrete p-adic dynamical systems (iteration of maps) are so called monomial systems. Behavior of a p-adic dynamical system $f(x) = x^n$ over the fields of p-adic numbers Q_p and C_p was investigated [1],[4]. In [5], pertubated monomial dynamical system defined by function $f_q(x) = x^n + q(x)$, have been studied. It was investigated the connection between monomial and perturbated monomial systems. Formulas for the number of cycles of a specific length to a given system and the total number of cycles of such dynamical systems were provided. In [6], the generalization of logistic dynamical system was investigated. Namely, attractors and Siegel discs of the dynamical system defined by $g(x) = x^3 + ax^2$ has been investigated. Therefore in the present paper we are going to study another type of generalization of the