ADVANCES IN MATERIALS ENGINEERING

Volume 1

Edited By:
Zahurin Halim
Iskandar Idris Yaacob
Md Abdul Maleque

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCES IN MATERIALS ENGINEERING
VOLUME 1

Edited By:

Zahurin Halim
Iskandar Idris Yaacob
Md Abdul Maleque

IIUM Press
# Table of Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td><em>Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan</em></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Polymer Clay Nanocomposites: Part I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td><em>Noor Azlina Hassan and Norita Hassan</em></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Effect of Processing Parameters on the Tensile Properties of TPNR Reinforced Short Carbon Fibre Composite</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td><em>Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid</em></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Effect of Maleic Anhydride Polyethylene on Damping Properties of HDPE/EPDM Nanocomposite</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td><em>Hazleen Anuar, Nur Ayuni Jama, and Shamsul Bahri Abdul Razak</em></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td><em>Hazleen Anuar and Muhammad Rejaul Kaiser</em></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Quality of Copper Film Electroplated on Silicon Wafer Using Different Current Densities</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td><em>Shahjahan Mridha</em></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Laser Nitriding of Titanium</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td><em>Shahjahan Mridha</em></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Composite Coating on Titanium Alloy Using High Power Laser</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td><em>Shahjahan Mridha</em></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 9
Measurement of Moisture Absorption in Borophosphosilicate Glass (BPGS) Films 50

Shahjahan Mridha and Shian Khee Tang

Chapter 10
The Effect of Processing Parameter on Tensile Properties of Thermoplastic Natural Rubber Nanocomposites 58

Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan

Chapter 11
Comparison of Mechanical Properties Between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite 64

Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 12
Water Absorption of TPNR Reinforced Short Carbon Fibre Composite 69

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 13
Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre 74

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 14
Effect of Fibre Length on Tensile Properties of TPNR-Kenaf Fibre Composite 79

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 15
Effect of Nanoclay on Mechanical Properties of PLA-Clay Nanocomposite 84

Hazleen Anuar and Muhammad Rejaul Kaiser

Chapter 16
Extraction of Glucose From Kenaf Core by Using Chemical Pre – Treatment Process 90

Nurhaizat Samsudin Mohamed, Hazleen Anuar, Maizirwan Mel, Rashidi Othman, Nur Aisyah Mohd Nor, Nur Aini Mohd Nasir, Mohd Adlan Mustafa Kamalbhin

Chapter 17
Wear of Nitride Coating Produced by Ti-Al Melt Synthesis in Nitrogen Environment 96

Shahjahan Mridha

Chapter 18
Effect of Dispersant on Protein Foaming-Consolidation Porous Alumina Containing Hydrothermal Derived Hydroxyapatite Nanopowder 103

Iis Sopyan and Ahmad Fadli
Chapter 19
Effect of Yolk Addition on Protein Foaming-Consolidation Porous Alumina-Calcium Phosphate Composites
Iis Sopyan and Ahmad Fadli

Chapter 20
Investigation of the Effect of Starch Addition on Protein Foaming-Consolidation Porous Alumina Containing Hydroxyapatite Nanopowder
Ahmad Fadli', Iis Sopyan, Nur Syahidah and Nur Nadia

Chapter 21
The Influence of Hydroxyapatite Loading on Protein Foaming-Consolidation Porous Alumina Sintered at 1300°C
Ahmad Fadli' and Iis Sopyan

Chapter 22
High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production
Afizah Afdzaluddin and Md Abdul Maleque

Chapter 23
Porous Alumina-Hydroxyapatite Composites via Protein Foaming-Consolidation Method: Effect of HA Loading on Physical Properties
Iis Sopyan, Ahmad Fadli and Nur Izzati Zulkifli

Chapter 24
Preparation and Characterisation of Low Density Polyethylene/Layered Silicate Nanocomposites
Salina Sharifuddin, Iskandar Idris Yaacob

Chapter 25
Effects of Sodium Dodecyl Benzene Sulphonate (NaDbs) on Li Imide-PMMA Based Solid Polymer Electrolyte
Fauziah Mohd Yusof and Iskandar Idris Yaacob

Chapter 26
Effect of Milling Time on Mechanochemically Synthesized Nanohydroxyapatite Bioceramics
Iis Sopyan, S. Adzila and M. Hamdi

Chapter 27
Morphological Analysis of Mechanochemically Synthesized Nanohydroxyapatite Bioceramics
Iis Sopyan, S. Adzila and M. Hamdi

Chapter 28
Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis
S. Adzila, Iis Sopyan and M. Hamdi
Chapter 29
Thermal Profile Analysis of Composite Brake Rotor
*Md Abdul Maleque and Abdul Mu'min Adebisi*

Chapter 30
The Effect of Fibre Content on Thermal Property of Coir Fibre Reinforced Cement-Albumen Composite
*Faridaul Faezah Razali, Nur Humairah Abdul Razak and Zuraida Ahmad*

Chapter 31
Pulsed Electrodeposition
*Suryanto*

Chapter 32
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
*Suryanto*

Chapter 33
Characterization and Utilization of Fly Ash
*Suryanto*

Chapter 34
Workability of Coir Fibre- Reinforced Cement-Albumen Composite
*Nur Humairah Abdul Razak and Zuraida Ahmad*

Chapter 35
Preparation of Rice Husk for Raw Material of Silicon
*Hadi Purwanto and Nor Fazilah Mohd Selamat*
Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid

Hazleen Anuar ¹ and Mohammad Rejaul Kaiser ²
1, 2. Faculty of Engineering – International Islamic University Malaysia
✉️: hazleen@iiu.edu.my; rajib_name@yahoo.com

Keywords: Plasticizer, Polylactic acid (PLA), Thermal properties.

Abstract. Polylactic acid (PLA) is one of the most potential candidates for the partial replacement of petrochemical based polymers because of its biodegradability and renewability. It shows high tensile strength; unfortunately the brittleness and rigidity limit its applicability like, fibers, films, etc., it is of high interest to formulate new PLA grades with improved flexibility and better impact properties. In order to develop PLA-based biodegradable packaging, the physico-mechanical properties of commercially available PLA should be modified using plasticizers. For this, PLA was mixed with blends of glycerol and oleic acid with different percentage and were characterized by utilization of DSC and TGA techniques. The effect of the addition of plasticizer on the thermal properties of PLA was investigated and the results revealed that glass transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm) decreased significantly.

Introduction

In recent decades biodegradable polyesters have received much attention. At the very beginning they were intensively resear for biomedical applications for their biodegradability and biocompatibility. Polylactic acid (PLA) is one of the most studied polymers because it can be produced via fermentation of renewable resources, like sugar beets or corn starch [1–3]. PLAs were initially investigated for drug delivery, sutures and orthopaedic implant applications [4–7]. Recently, considerable efforts have been made to extend the application of PLA to the packaging field [8–11]. PLA represents a good candidate to produce biodegradable packaging because of its good mechanical properties [12].

However, low ductility, toughness and high modulus have limited its application only to the rigid thermoformed packaging industry while for flexible packaging new grades of PLA with specific end-use performances are required. High tensile strength, ductility and flexibility at room temperature, transparency, barrier properties, etc are the most important requirements for packaging materials such as films, food packaging. Attempts have been made to improve the mechanical properties of PLA by copolymerization with other monomers but none of these copolymerization processes is yet economically viable and none is known to produce copolymers on an industrial scale for packaging applications [13–16]. Blending PLA with other polymers/copolymers has also been investigated, however only moderate improvement in mechanical properties was achieved [17–24]. Another way to improve the processability, flexibility and ductility of PLA is the use of plasticizers as for glassy polymers in the plastics industry. The choice of plasticizers to be used as modifiers for PLA is limited by the requirement of the application. Only non toxic substances approved for food contact can be considered as plasticizing agents in food packaging materials. The plasticizer should be compatible with PLA and stable at the elevated temperature during processing.