ADVANCES IN MATERIALS ENGINEERING
Volume 1

Edited By:
Zahurin Halim
Iskandar Idris Yaacob
Md Abdul Maleque

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Table of Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Polymer Clay Nanocomposites: Part I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Noor Azlina Hassan and Norita Hassan</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Effect of Processing Parameters on the Tensile Properties of TPNR Reinforced Short Carbon Fibre Composite</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Effect of Maleic Anhydride Polyethylene on Damping Properties of HDPE/EPDM Nanocomposite</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Hazleen Anuar, Nur Ayuni Jama, and Shamsul Bahri Abdul Razak</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Hazleen Anuar and Muhammad Rejaul Kaiser</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Quality of Copper Film Electroplated on Silicon Wafer Using Different Current Densities</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Shahjahan Mridha</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Laser Nitriding of Titanium</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Shahjahan Mridha</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Composite Coating on Titanium Alloy Using High Power Laser</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Shahjahan Mridha</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 9
Measurement of Moisture Absorption in Borophosphosilicate Glass (BPGS) Films

Shahjahan Mridha and Shian Khee Tang

Chapter 10
The Effect of Processing Parameter on Tensile Properties of Thermoplastic Natural Rubber Nanocomposites

Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan

Chapter 11
Comparison of Mechanical Properties Between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite

Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 12
Water Absorption of TPNR Reinforced Short Carbon Fibre Composite

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 13
Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 14
Effect of Fibre Length on Tensile Properties of TPNR-Kenaf Fibre Composite

Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 15
Effect of Nanoclay on Mechanical Properties of PLA-Clay Nanocomposite

Hazleen Anuar and Muhammad Rejaul Kaiser

Chapter 16
Extraction of Glucose From Kenaf Core by Using Chemical Pre – Treatment Process

Nurhaizah Seeni Mohamed, Hazleen Anuar, Maizirwan Mel, Rashidi Othman, Nur Aisyah Mohd Nordlin, Nur Aimi Mohd Nasir, Mohd Adlan Mustafa Kamalbhairun

Chapter 17
Wear of Nitride Coating Produced by Ti-Al Melt Synthesis in Nitrogen Environment

Shahjahan Mridha

Chapter 18
Effect of Dispersant on Protein Foaming-Consolidation Porous Alumina Containing Hydrothermal Derived Hydroxyapatite Nanopowder

Iis Sopyan and Ahmad Fadli
Chapter 19
Effect of Yolk Addition on Protein Foaming-Consolidation Porous Alumina-Calcium Phosphate Composites

Iis Sopyan and Ahmad Fadli

Chapter 20
Investigation of the Effect of Starch Addition on Protein Foaming-Consolidation Porous Alumina Containing Hydroxyapatite Nanopowder

Ahmad Fadli, Iis Sopyan, Nur Syahidah and Nur Nadia

Chapter 21
The Influence of Hydroxyapatite Loading on Protein Foaming-Consolidation Porous Alumina Sintered at 1300°C

Ahmad Fadli and Iis Sopyan

Chapter 22
High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production

Afiqah Afzaluddin and Md Abdul Maleque

Chapter 23
Porous Alumina-Hydroxyapatite Composites via Protein Foaming-Consolidation Method: Effect of HA Loading on Physical Properties

Iis Sopyan, Ahmad Fadli and Nur Izzati Zulkifli

Chapter 24
Preparation and Characterisation of Low Density Polyethylene/Layered Silicate Nanocomposites

Salina Sharifuddin, Iskandar Idris Yaacob

Chapter 25
Effects of Sodium Dodecyl Benzene Sulphonate (NaDbs) on Li Imide-PMMA Based Solid Polymer Electrolyte

Fauziah Mohd Yusof and Iskandar Idris Yaacob

Chapter 26
Effect of Milling Time on Mechanochemically Synthesized Nanohydroxyapatite Bioceramics

Iis Sopyan, S. Adzila and M. Hamdi

Chapter 27
Morphological Analysis of Mechanochemically Synthesized Nanohydroxyapatite Bioceramics

Iis Sopyan, S. Adzila and M. Hamdi

Chapter 28
Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis

S. Adzila, Iis Sopyan and M. Hamdi
Chapter 29
Thermal Profile Analysis of Composite Brake Rotor
Md Abdul Maleque and Abdul Mu'min Adebiyi

Chapter 30
The Effect of Fibre Content on Thermal Property of Coir Fibre Reinforced Cement-Albumen Composite
Faridaul Faezah Razali, Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 31
Pulsed Electrodeposition
Suryanto

Chapter 32
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
Suryanto

Chapter 33
Characterization and Utilization of Fly Ash
Suryanto

Chapter 34
Workability of Coir Fibre- Reinforced Cement-Albumen Composite
Nur Humairah Abdul Razak and Zuraida Ahmad

Chapter 35
Preparation of Rice Husk for Raw Material of Silicon
Hadhi Purwanto and Nor Fazilah Mohd Selamat
Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites

Noor Azlina Hassan¹, Sahrim Hj. Ahmad², Rozaidi Rasid³ and Norita Hassan⁴
¹Faculty of Engineering – International Islamic University Malaysia
²³⁴ Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
✉: noorazlina_hassan@iium.edu.my

Keywords: Nanocomposites, thermoplastic natural rubber, nanoclay.

Abstract. Thermoplastic natural rubber nanoclay filled composite was prepared using a melt blending technique. TPNR was prepared in the ratio of (70:20:10) from LLDPE, NR and LNR as a compatibilizer. The clay used was sodium bentonite (smectite clay). X-ray diffraction of thermoplastic natural rubber matrix and smectite clay indicates that intercalation-exfoliation of the TPNR into silicate interlayers for the nanoclay. The glass transition temperature of TPNR/clay nanocomposites obtained from dynamic mechanical analysis (DMA) was higher than TPNR matrix. The storage modulus of the nanocomposites increased with increasing nanoclay content. The interaction between the matrix and the fillers remarkably affects the dynamic mechanical properties of the nanocomposites.

Introduction

Polyolefin is one of the most common resins, owing to their low density good processability and low cost. They are widely used in diverse application such as vehicles, agriculture facilities, construction materials, electronic and sporting goods. However, the use of the polyolefin is restricted because of their several drawbacks such as lower strength, poorer heat resistance and others.

Thermoplastic natural rubber (TPNR) is a blend of rubber and thermoplastic and most probably the fastest growing sector in the polymer market [1-3]. The main advantages of these materials are that the thermoplastic machinery for processing does not require factory compounding or vulcanization and the scrap and rejects can be reprocessed. The rubber phase is partially cross-linked and thereby produces a morphology involving microphase separation responsible for the unique properties of the material.

Smectite nanoclay with huge surface area is widely used in polyolefin composites. Its application is now mainly focused on the improvement of mechanical and optical properties such as stiffness, gas barrier, flammability and etc. This paper, described the effect of nanoclay content on the dynamic mechanical properties of TPNR, which provide important information of the viscoelasticity of the composites over a wide temperature range.

Experiment

Materials and Preparation. Linear low density polyethylene (LLDPE) used in this study was supplied by Exxonmobil Chemical Corporation with the density 0.918gm⁻³. The natural rubber (NR) type SMR-L with density 0.91gm⁻³ was supplied by Guthrie (M) Bhd. Liquid natural rubber