The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim

IUM Press
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(5410/18557) 1</td>
</tr>
<tr>
<td>2.</td>
<td>Limiting factors on the global distribution of horseshoe crabs</td>
<td>(5410/18558) 11</td>
</tr>
<tr>
<td>3.</td>
<td>Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560) 19</td>
</tr>
<tr>
<td>4.</td>
<td>Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18560) 27</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563) 35</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18566) 47</td>
</tr>
<tr>
<td>7.</td>
<td>Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(5410/18567) 57</td>
</tr>
<tr>
<td>8.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568) 69</td>
</tr>
<tr>
<td>9.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570) 83</td>
</tr>
<tr>
<td>10.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(5410/18571) 95</td>
</tr>
<tr>
<td>11.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573) 109</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18574) 127</td>
</tr>
<tr>
<td>13.</td>
<td>In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575) 137</td>
</tr>
<tr>
<td>14.</td>
<td>Effects of salinity on the early growth of Tachypleus gigas larvae - An In-vitro study</td>
<td>(3575/18577) 147</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia ... (5410/19519) ... 155

16. Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at East Peninsular Malaysia ... (5410/19519) ... 165

17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (Tachypleus gigas) ... (5410/19519) ... 175

18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab ... (5410/19519) ... 183

19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia ... (5410/19519) ... 193

20. Bionomics of Malaysian horseshoe crabs Tachypleus gigas ... (5410/19519) ... 203

21. Feeding Ecology of Mangrove horseshoe crab Carcinoscorpius rotundicauda ... (5410/19519) ... 213

22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence ... (5410/19519) ... 225

23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? ... (5410/19519) ... 237

24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 ... (5410/19717) ... 251

25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 ... (5410/19720) ... 267

26. Genetic Diversity of Tachypleus gigas Population from West coast of peninsular Malaysia ... (5410/19720) ... 275

27. Does continental drift influence in the genetic variability among the horseshoe crab population? ... (5410/19720) ... 287

28. Evolution of horseshoe crabs – palaeontological and Molecular viewpoint ... (5410/19720) ... 297

29. Factors involving in the clot formation of horseshoe crab blood ... (5410/19720) ... 307

30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies ... (5410/19720) ... 317

31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood ... (5410/19720) ... 325

32. Characterization of Tachypleus Amebocyte Lysate (TAL) ... (5410/19720) ... 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs .. (5410/19791) 343

34. Tachypleus gigas mortality due biomedical bleeding process .. 351

35. Conservation measures on horseshoe crab population – A global view .. (5410/19759) 359

Glossary .. 369
CHAPTER – 18

Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab

1Aqilah, M., 1Kamaruzzaman, B.Y., 1Akbar John, B., 2Zalcha, K.

1Institute of Oceanography and Maritime studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia
2Institute of Tropical Aquaculture, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

Abstract
An attempt was made to determine the selected heavy metal (Copper and Cadmium) accumulative concentrations in different body parts of Malaysian horseshoe crabs [Tachypleus gigas (Muller, 1785)]. Heavy metal accumulation levels were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Highest mean concentration (µg g⁻¹ wet weight) of Copper (Cu) and Cadmium (Cd) was observed in Gut (129.94±13.8 ppm) and apodeme (4.16±0.54 ppm) samples respectively while lowest concentrations of metals were observed in leg tissues (Cu = 60.85 ppm; Cd = 2.12 ppm). Results clearly showed that bioaccumulation of essential metal (Co) concentration in all the analyzed body parts were higher than non-essential heavy metal (Cd) Statistical predictions revealed that bioaccumulation of metals were not significantly influenced by weight, total length and carapace width of the animal. The heavy metal accumulations in samples were higher than the national and international permissible limit range and hence further extensive studies need to be addressed to determine whether the horseshoe crab samples from Pahang coast is suitable for human consumption.

Key words: Bioaccumulation, heavy metals, horseshoe crabs, Nesting ground, apodeme.

Introduction
Horseshoe crabs are marine chelicerate arthropods remarkably retaining their genetic makeup and morphologically unchanged for more than 200 million years (Walls et al., 2002; Hurton and Berkson, 2004). Out of four known species of horseshoe crab, three species (Trachypleus gigas,