The Living Fossil (Horseshoe crab)

Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(5410/18551)1</td>
</tr>
<tr>
<td>2.</td>
<td>Limiting factors on the global distribution of horseshoe crabs</td>
<td>(5410/18550)11</td>
</tr>
<tr>
<td>3.</td>
<td>Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560)19</td>
</tr>
<tr>
<td>4.</td>
<td>Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18560)27</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563)35</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18564)47</td>
</tr>
<tr>
<td>7.</td>
<td>Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(5410/18567)57</td>
</tr>
<tr>
<td>8.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568)69</td>
</tr>
<tr>
<td>9.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570)83</td>
</tr>
<tr>
<td>10.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(5410/18571)95</td>
</tr>
<tr>
<td>11.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573)109</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18574)127</td>
</tr>
<tr>
<td>13.</td>
<td>In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575)137</td>
</tr>
<tr>
<td>14.</td>
<td>Effects of salinity on the early growth of Tachylepis gigas larvae - An In-vitro study</td>
<td>(3575/18577)147</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia ... (5410/1859) 155

17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (Tachypleus gigas) ... (5410/1958) 175

18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab (5410/1958) 183

19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia ... (5410/1958) 193

20. Biomicroscopic of Malaysian horseshoe crabs Tachypleus gigas (5410/1958) 203

22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence ... (5410/1975) 225

23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? ... (5410/1975) 237

24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 (5410/1975) 251

25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 (5410/1975) 267

26. Genetic Diversity of Tachypleus gigas Population from West coast of peninsular Malaysia ... (5410/1975) 275

27. Does continental drift influence in the genetic variability among the horseshoe crab population? .. (5410/1975) 287

28. Evolution of horseshoe crabs – palaeontological and Molecular viewpoint ... (5410/1975) 297

29. Factors involving in the clot formation of horseshoe crab blood (5410/1975) 307

30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies .. (5410/1975) 317

31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood ... (5410/1975) 325

32. Characterization of Tachypleus Amebocyte Lysate (TAL) (5410/1975) 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs .. 343

34. Tachypleus gigas mortality due biomedical bleeding process ... 351

35. Conservation measures on horseshoe crab population – A global view ... 359

Glossary ... 369
CHAPTER – 16

Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at East Peninsular Malaysia

Akbar John, B., Nasihin, S., Jalal, K.C.A.

Institute of Oceanography and Maritime studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia

Abstract

A detailed investigation was carried out to determine the sediment nature of estuarine nesting ground of Malaysian horseshoe crabs (*Tachypleus gigas* and *Carcinoscorpius rotundicauda*) at Pekan estuary, Pahang coast, Malaysia. A complete year data on sediment size and sorting values were calculated following published methods. Mean sediment size analysis (φ phi) showed that the distribution of sediment at the Pekan nesting ground was median sediment (1.073±0.388φ) at non monsoon and coarse sediment (0.641±0.075φ) at monsoon season. Sediment sorting value analysis clearly showed that the nature of sediments at Pekan nesting ground were of moderately well sorted. Interestingly, no significant difference in the sediment size and its sorting values were observed in selected estuary during different monsoonal cycles. Field observation showed that the horseshoe crab prefers estuarine nesting ground (Pekan, Pahang coast) for spawning over coastal beach nesting grounds (eg, Balok, Pahang coast). The results clearly showed that the sediment nature at the Pekan estuary is still conducive for the better nesting of Malaysian horseshoe crabs.

Key words: Horseshoe crabs; *Tachypleus gigas*; *Carcinoscorpius rotundicauda*; Nesting ground; Sediment profiling, Pekan

Introduction

Estuaries are critical interfaces between the marine and terrestrial environment. The deposition of the fine ‘mud’ fraction occurs as a result of the interaction between currents, tides and salinity. Microphytobenthos is also an important ecological mechanism contributing to the distribution of fine sediment through processes of sediment sequestering and stabilisation (Black and Paterson,