The Living Fossil (Horseshoe crab)

Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(5410/18557)</td>
</tr>
<tr>
<td>2.</td>
<td>Limiting factors on the global distribution of horseshoe crab</td>
<td>(5410/18558)</td>
</tr>
<tr>
<td>3.</td>
<td>Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560)</td>
</tr>
<tr>
<td>4.</td>
<td>Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18560)</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563)</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18566)</td>
</tr>
<tr>
<td>7.</td>
<td>Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(5410/18567)</td>
</tr>
<tr>
<td>8.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568)</td>
</tr>
<tr>
<td>9.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570)</td>
</tr>
<tr>
<td>10.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(5410/18571)</td>
</tr>
<tr>
<td>11.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573)</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18574)</td>
</tr>
<tr>
<td>13.</td>
<td>In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575)</td>
</tr>
<tr>
<td>14.</td>
<td>Effects of salinity on the early growth of Tachylepis gigas larvae - An In-vitro study</td>
<td>(3575/18577)</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia ... (5410/185/19) 155

17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (Tachylepus gigas) ... (5410/13587) 175

18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab (5410/18585) 183

19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia ... (5410/16586) 193

21. Feeding Ecology of Mangrove horseshoe crab Carcinoscorpius rotundicauda ... (5410/19717) 213

22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence ... (3575/19715) 225

23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? .. (5410/19715) 237

24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 (5410/19717) 251

25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 (5410/19720) 267

26. Genetic Diversity of Tachylepus gigas Population from West coast of peninsular Malaysia ... (3575/19727) 275

27. Does continental drift influence in the genetic variability among the horseshoe crab population? ... (3575/19727) 287

28. Evolution of horseshoe crabs – paleontological and Molecular viewpoint ... (3575/19731) 297

29. Factors involving in the clot formation of horseshoe crab blood (5410/19711) 307

30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies ... (5410/19740) 317

31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood (5410/19744) 325

32. Characterization of Tachylepus Amebocyte Lysate (TAL) (3575/19729) 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs ... (5410/19791) 343

34. Tachypleus gigas mortality due biomedical bleeding process .. (3575/19756) 351

35. Conservation measures on horseshoe crab population – A global view .. (5410/19757) 359

Glossary... 369
CHAPTER – 15

Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia

Institute of Oceanography and Maritime studies (INOCEM). Kulliyyah of Science.
International Islamic University Malaysia, Jalan Sultan Ahmad Shah,
Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia

Abstract

Horseshoe crabs prefer beaches with loosely packed sediment for the nesting of their eggs. In present study, Sediment profile at the observed the nesting ground of horseshoe crabs at Balok, Pahang coast was investigated. Mean sediment size analysis (σ phi) showed that during the non-monsoon and monsoon seasons, the distribution of sediment at the nesting grounds was mostly were of median sediment (1.88±0.378σ) and finer sediment (2.249±0.114σ) at Balok station respectively. The nature of sediments were of moderately well sorted There was no significant difference in sediment size or sorting value during monsoonal cycle. The results clearly showed that the sediment nature at the Balok station is still conducive for the better nesting of horseshoe crabs.

Key Words: Horseshoe crabs; Tachyleus gigas; Carcinoscorpius rotundicauda; Nesting ground; Sediment profiling

Introduction

Like number of species, horseshoe crabs lay their eggs on beaches in the intertidal zones. They migrate from continental shelf to the shallow coastal area during full and new moon days and their spawning is well synchronized with spring tides (Penn and Brockmann, 1994). It is interesting to note that out of four extant species of horseshoe crabs Limulus polyphemus, Tachyleus gigas, T.tridentatus and Carcinoscorpius rotundicauda. later three are inhabiting Malaysian coastal waters while the distribution of T.tridentatus is restricted to East Malaysian coast (Borneo) (John et al., 2010; Kamaruzzaman et al., 2011). Considerable amount of studies