The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim

IUM Press
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Global distribution and Taxonomy of extant horseshoe crabs........</td>
<td>(5410/18757)</td>
<td>1</td>
</tr>
<tr>
<td>2. Limiting factors on the global distribution of horseshoe crabs......</td>
<td>(5410/18758)</td>
<td>11</td>
</tr>
</tbody>
</table>
| 3. Site selection and nesting behaviour of horseshoe crabs with special reference to
 Limulus polyphemus... | (3575/18560) | 19 |
| 4. Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular
 Malaysia... | (5410/18756) | 27 |
| 5. Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1 | (3575/18663) | 35 |
| 6. Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2 | (3575/18566) | 47 |
| 7. Physicochemical parameters relationship at the horseshoe crab nesting
 grounds of Pahang coast, Malaysia... | (5410/18567) | 57 |
| 8. Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station,
 Pahang, Malaysia – Part 1 .. | (3575/18568) | 69 |
| 9. Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station,
 Pahang, Malaysia – Part 2 .. | (3575/18570) | 83 |
| 10. Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station,
 Pahang, Malaysia – Part 1 .. | (5410/18571) | 95 |
| 11. Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station,
 Pahang, Malaysia – Part 2 .. | (3575/18573) | 109 |
| 12. Influence of physicochemical parameters on the macrobenthic diversity and
 abundance in horseshoe crab nesting grounds, East coast of Peninsular
 Malaysia... | (5410/18574) | |
| 13. In-vitro study on the effect of salinity on the hatching success of Malaysian
 Horseshoe crab eggs.. | (3575/18575) | 137 |
| 14. Effects of salinity on the early growth of Tachypleus gigas larvae
 - An In-vitro study.. | (3575/18577) | 147 |
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia ... (5410/185/19)155
16. Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at East Peninsular Malaysia ... (3575/19580)165
17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (Tachyleus gigas) ... (5410/19588) ..175
18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab ... (5410/19585) ..183
19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia ... (5410/18586) ..193
20. Bionomics of Malaysian horseshoe crabs Tachyleus gigas ... (5410/19710) ..203
21. Feeding Ecology of Mangrove horseshoe crab Carcinoscorpius rotundicauda ... (5410/19711) ..213
22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence (3575/19716) ..225
23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? ... (5410/19715) ..237
24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 ... (5410/19717) ..251
25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 (5410/19720) ..267
26. Genetic Diversity of Tachyleus gigas Population from West coast of peninsular Malaysia ... (3575/19721) ..275
27. Does continental drift influence in the genetic variability among the horseshoe crab population? ... (3575/19727) ..287
28. Evolution of horseshoe crabs – paleontological and Molecular viewpoint (3575/19731) ..297
29. Factors involving in the clot formation of horseshoe crab blood ... (5410/19711) ..307
30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies ... (5410/19740) ..317
31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood ... (5410/19744) ..325
32. Characterization of Tachyleus Amebocyte Lysate (TAL) ... (3575/19709) ..333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs ... (5410/19751) 343

34. Tachypleus gigas mortality due biomedical bleeding process .. (3575/19756) 351

35. Conservation measures on horseshoe crab population – A global view (5410/19757) 359

Glossary ... 369
CHAPTER - 11

Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2

Nasihin, S., Jalal, K.C.A., Akbar John, B.

Institute of Oceanography and Maritime studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200. Kuantan Pahang, Malaysia

Abstract
Detailed investigation was carried out to determine the major macrobenthic community composition and diversity along the observed nesting grounds of horseshoe crab at Pekan station (Estuarine nesting ground). Macrobenthic samples were collected in every new moon days between March 2010 and February 2011. Group wise identification were carried out for each samples and abundance were recorded. Different diversity indices showed no significant variation in macrobenthic diversity during monsoonal and non monsoonal period (P > 0.05) while their richness was higher during monsoon period compared to non monsoon time. Diversity indices data proved the homogeneous distribution of major macrobenthic species round the year. Overall, Shannon diversity value proved the lower diversity of species along the Pekan nesting grounds which eventually proved influence of habitat destruction on the macrobenthic community composition in the nesting grounds of horseshoe crabs.

Key words: horseshoe crab, diversity indices, nesting grounds, new moon days, Pekan station.

Introduction
Horseshoe crabs are omnivorous feeders on a wide variety of benthic invertebrates, including bivalves, polychaetes, crustaceans, and gastropods. The functional morphology of feeding and the anatomy and physiology of the digestive system has recently been reviewed by Botton and Shuster (2003), so this contribution emphasizes the ecological importance of horseshoe crab predation on estuarine and coastal benthic communities. Studies have revealed that the extant 4 species of horseshoe crabs are selective feeders primarily feed on bivalves including blue