The Living Fossil (Horseshoe crab) Kamaruzzaman Yunus Akbar John Ahmed Jalal Khan Chowdhury Zaleha Kassim **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # The Living Fossil (Horseshoe crab) Editors, Kamaruzzaman Yunus Akbar John **Ahmed Jalal Khan Chowdhury** Zaleha Kassim # Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 CHUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Kamaruzzaman Yunus The Living Fossil (Horseshoe crab) Kamaruzzaman Yunus Include index Bibliography: p. ISBN ISBN: 978-967-418-042-3 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: IRCM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Contents** | Chapte | ers Titles | Page No | |--------|---|---| | 1. | Global distribution and Taxonomy of extant horseshoe crabs | (5410/18557) | | | Limiting factors on the global distribution of horseshoe crabs. | (= 1.5 / 10 = FA) | | 3. | Site selection and nesting behaviour of horseshoe crabs with spanning polyphemus | • | | | Distribution of horseshoe crabs at their nesting grounds, East of Malaysia | | | 5. | Hydrology of horseshoe crab nesting ground at Pahang coast - | Part 1 (3575/18563) ₃₅ | | 6. | Hydrology of horseshoe crab nesting ground at Pahang coast - | Part 2 (3575/18566) 47 | | | Physicochemical parameters relationship at the horseshoe crab grounds of Pahang coast, Malaysia | • | | | Macrobenthic diversity at the Horseshoc Crab nesting ground, Pahang, Malaysia – Part 1 | | | | Macrobenthic diversity at the Horseshoe Crab nesting ground, Pahang, Malaysia – Part 2 | | | 10. | Macrobenthic diversity at the Horseshoe Crab nesting ground, Pahang, Malaysia – Part 1 | Pekan station, | | | Macrobenthic diversity at the Horseshoe Crab nesting ground, Pahang, Malaysia – Part 2 | | | 12. | Influence of physicochemical parameters on the macrobenthic abundance in horseshoe crab nesting grounds, East coast of Pe | diversity and
(5410/19574)
ninsular Malaysia127 | | | In-vitro study on the effect of salinity on the hatching success of the Horseshoe crab eggs | • | | | Effects of salinity on the early growth of Tachypleus gigas larv | | | 15. Sediment characteristics of horseshoe crabs nesting Pahang, Malaysia | | |--|--| | 16. Sediment Profiling of the Estuarine Nesting Grou | | | East Peninsular Malaysia | 165 | | 17. Bioaccumulation of some essential metal concent horseshoe crabs (<i>Tachypleus gigas</i>) | • | | 18. Cu and Cd Bioaccumulation in Malaysian Horses | shoe Crab (5410 / 19595) | | 19. Metal concentration in horseshoe crab nesting gro | | | Pahang coast, Malaysia | (5410/18586) 193 | | 20. Bionomics of Malaysian horseshoe crabs <i>Tachyp</i> | leus gigas (54 - 1 19778 203 | | 21. Feeding Ecology of Mangrove horseshoe crab Co | arcinoscorpius rotundicauda213 | | 22. Emerging interest on DNA barcoding technology high-tech biodiversity studies using COI gene as | • • | | 23. Can DNA barcode accurately delineate living fos and its different developmental stages? | | | 24. Revision on the molecular phylogeny of horsesho | | | 25. Revision on the molecular phylogeny of horsesho | pe crabs - Part 2. (54:0/19720) 267 | | 26. Genetic Diversity of <i>Tachypleus gigas</i> Population peninsular Malaysia | | | 27. Does continental drift influence in the genetic var horseshoe crab population? | (3575/19727) 287 | | 28. Evolution of horseshoe crabs – paleontological ar | (3575/19731)
and Molecular viewpoint297 | | 29. Factors involving in the clot formation of horsesh | oc crab blood (5410/19711)307 | | 30. Methods for bacterial endotoxin quantification in | | | horseshoe crab blood studies | (5410/19740) 317 | | horseshoe crab blood studies | (5410/19144) ian Horseshoe crab blood325 | | 32. Characterization of <i>Tachypleus</i> Amebocyte Lysat | te (TAL) (3575/1975 4) 333 | | 33. Environmental and Pharmaceutical applications of Amebocy | tes Lysate | | |--|------------------------------|---------------| | (LAL/TAL) from Horseshoe crabs | (5410/1 9751) | 343 | | 34. Tachypleus gigas mortality due biomedical bleeding process | | | | 35. Conservation measures on horseshoe crab population – A glo | obal view <i>(5410/19759</i> | 2 .359 | | Glossarv | | .369 | # **CHAPTER - 9** Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2 ¹Jalal, K.C.A., ¹Akbar John, B., ¹Kamaruzzaman, B.Y., ¹Nasihin, S. ¹Institute of Oceanography and Maritime studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia ## Abstract Monthly and seasonal variation in the major macrobenthic diversity along the balok station were studied during New moon days. Highest diversity of macrobenthic community was observed during June 2010 (Shannon H' = 0.685; Simpson 1/D = 4.765) while the lowest diversity was recorded during Mar-10 (H' = 0.59; 1/D = 3.115). There was no significant variation in the macrobenthic diversity was observed between monsoon and non monsoon period (p > 0.05). richness indexes showed that the species richness was higher during Dec-10 (Marfalf d = 1.728; McIntosh D = 1.067) and lower during March and May-10 (d = 1.35; D = 1.033). Macrobenthos richness was higher during monsoon period compared to non monsoon time. Higher dominance of macrobenthos was observed during the horseshoe crabs peak mating season (Junc- August). There was no significant variation in the evenness was observed during sampling period which showed the homogeneous distribution of species round the year. **Key words:** Horseshoe crab, Macrobenthos, Nesting ground, Balok station, Diversity Indices. ## Introduction Macrobenthic community analysis provides an instantaneous both snapshot assessment of current disturbance effects, much as most chemical and physical analyses can provide, as well as an integrated response of the disturbance effects over the life span of the studied organisms. These assets have resulted in macrobenthic community analysis to become part of international standards for the assessment of marine habitat quality (Borja *et al.*, 2003; Rosenberg *et al.*, 2004). Moreover, macrobenthic species are of special interest in this context because: (1) most of