The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(5410/18557) 1</td>
</tr>
<tr>
<td>2.</td>
<td>Limiting factors on the global distribution of horseshoe crabs</td>
<td>(5410/18558) 11</td>
</tr>
<tr>
<td>3.</td>
<td>Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560) 19</td>
</tr>
<tr>
<td>4.</td>
<td>Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18560) 27</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563) 35</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18566) 47</td>
</tr>
<tr>
<td>7.</td>
<td>Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(5410/18567) 57</td>
</tr>
<tr>
<td>8.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568) 69</td>
</tr>
<tr>
<td>9.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570) 83</td>
</tr>
<tr>
<td>10.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(5410/18571) 95</td>
</tr>
<tr>
<td>11.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573) 109</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18574)</td>
</tr>
<tr>
<td>13.</td>
<td>In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575) 137</td>
</tr>
<tr>
<td>14.</td>
<td>Effects of salinity on the early growth of Tachylepis gigas larvae - An In-vitro study</td>
<td>(3575/18577) 147</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia .. 155

16. Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at East Peninsular Malaysia .. 165

17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (*Tachypleus gigas*) .. 175

18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab (*Tachypleus gigas*) 183

19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia .. 193

20. Biomonic of Malaysian horseshoe crabs *Tachypleus gigas* .. 203

21. Feeding Ecology of Mangrove horseshoe crab *Carcinoscorpius rotundicauda* 213

22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence 225

23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? ... 237

24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 251

25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 267

26. Genetic Diversity of *Tachypleus gigas* Population from West coast of peninsular Malaysia .. 275

27. Does continental drift influence in the genetic variability among the horseshoe crab population? .. 287

28. Evolution of horseshoe crabs – palaeontological and Molecular viewpoint 297

29. Factors involving in the clot formation of horseshoe crab blood 307

30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies .. 317

31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood 325

32. Characterization of *Tachypleus Amebocyte Lysate* (TAL) 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs ... (5410/19751) 343

34. *Tachypleus gigas* mortality due biomedical bleeding process .. (3575/19756) 351

35. Conservation measures on horseshoe crab population – A global view ... (5410/19757) 359

Glossary ... 369
CHAPTER - 4

Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia

1Zaleha, K., 1Erni, 2Akbar John, B., 2Kamaruzzaman, B.Y.
1Institute of Tropical Aquaculture, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
2Institute of Oceanography and Maritime studies (INOCEM), Kulliyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia

Abstract

Present study was aimed to investigate the distribution and abundance of horseshoe crab along the observed nesting grounds of horseshoe crabs in East coast of Peninsular Malaysia. Sampling was conducted in a time span of four months from September to December 2009. Percentage abundance of nests was higher in Pekan station (84.6%) compared to Balok station (15.39%). The highest number of horseshoe crab nests recorded was in November (N =11) and lower in September (N=1). A total of 4 nests were noted in September in Balok station while no nests were recorded in other sampling months. Kruskall-wallis analysis showed the significant difference in the number of horseshoe crab nesting during full and new moon periods while the site specific difference was not significant (P > 0.05).

Key words: horseshoe crab, nesting grounds, Balok, Pekan, living fossil.

Introduction

Horseshoe crabs belong to a class of animals called Merostomata, order Xiphosurida and from the family Limulidae (Mikkelsen, 1988). There are four species of horseshoe crab in the world with discernible morphology which are Limulus polyphemus: Tachypleus gigas, Carcinoscorpius rotundicauda and Tachypleus tridentatus. Three species, Tachypleus tridentatus, T. gigas and C. rotundicauda, occur in the coastal waters of Asia from Indian to Japan, including the waters