
COMPUTATIONAL INTELLIGENCE IN ROBUST CONTROL

Theory and Applications

Rini Akmeliawati

Research Management Centre
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

COMPUTATIONAL INTELLIGENCE IN ROBUST CONTROL

Theory and Applications

Editor: Rini Akmeliawati

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Computational Intelligence in Robust Control: Theory and Applications
Bibliography p.
ISBN

ISBN: 978-967-418-196-3

Member of MajlisPenerbitanIlmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:
HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ebsan.

TABLE OF CONTENTS

Pro	eface	i
Ac	knowledgement	iii
Ed	itor	iv
Tal	ble of Content	\mathbf{v}
1.	Computational Intelligence in Robust Control: A Review R. Akmeliawati and S. M. Raafat	1
2.	Real-Coded Moga For Intelligent Control Of A Manoeuvring System S. F. Toha and M. O. Tokhi	Flexible 28
3.	Optimized LQR Controller Synthesis For 3DOF Helicopt Multi-Objective Differential Evolution (MODE) I. B. Tijani, R. Akmeliawati, A. Legowo, A. G.A. Muthalif	ter Using 57
4.	PSO-Based Robust Controller Design For A Rotary Pendulum Stabilization M. I. Solihin, R. Akmeliawati, A. Legowo	Inverted 89
5.	Design And Application Of Intelligent Fuzzy Controlle Quarter Car Suspension System Md. Mahbubur Rashid	er On A 113
6.	Intelligent Robust Control for Precise Tracking Performanc X-Y Positioning System S. M. Raafat and R. Akmeliawati	e of 147

Chapter 4

PSO-BASED ROBUST CONTROL DESIGN FOR A ROTARY INVERTED PENDULUM STABILIZATION

Mahmud Iwan Solihin, Rini Akmeliawati, Ari Legowo
Intelligent Mechatronics Systems Research Unit,
Department of Mechatronics Engineering,
International Islamic University Malaysia
Kuala Lumpur, Malaysia

Abstract

This chapter discusses the application of Particle Swarm Optimization (PSO) for robust feedback controller design of an inverted pendulum. In the proposed method, a set of robust feedback controller gain is tuned by PSO in a single-objective constrained optimization mode. The state-space model of the plant with structured parametric uncertainty is used to tune the feedback controller gains such that the closed-loop system would have maximum stability radius. Stability radius is a frequency-domain measure for system robustness to parametric perturbation. This optimization-based method is motivated by the necessity of robust controller design technique which does not involve trial-and-error approach and complicated mathematical formulation. The proposed PSO-based robust controller design is applied to stabilize a rotary inverted pendulum. The simulation results indicate that the proposed technique works effectively to obtain a robust feedback controller.