
COMPUTATIONAL INTELLIGENCE IN ROBUST CONTROL

Theory and Applications

Rini Akmeliawati

Research Management Centre
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

COMPUTATIONAL INTELLIGENCE IN ROBUST CONTROL

Theory and Applications

Editor: Rini Akmeliawati

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Computational Intelligence in Robust Control: Theory and Applications
Bibliography p.
ISBN

ISBN: 978-967-418-196-3

Member of MajlisPenerbitanIlmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:
HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ebsan.

TABLE OF CONTENTS

Pro	eface	i
Ac	knowledgement	iii
Ed	itor	iv
Tal	ble of Content	\mathbf{v}
1.	Computational Intelligence in Robust Control: A Review R. Akmeliawati and S. M. Raafat	1
2.	Real-Coded Moga For Intelligent Control Of A Manoeuvring System S. F. Toha and M. O. Tokhi	Flexible 28
3.	Optimized LQR Controller Synthesis For 3DOF Helicopt Multi-Objective Differential Evolution (MODE) I. B. Tijani, R. Akmeliawati, A. Legowo, A. G.A. Muthalif	ter Using 57
4.	PSO-Based Robust Controller Design For A Rotary Pendulum Stabilization M. I. Solihin, R. Akmeliawati, A. Legowo	Inverted 89
5.	Design And Application Of Intelligent Fuzzy Controlle Quarter Car Suspension System Md. Mahbubur Rashid	er On A 113
6.	Intelligent Robust Control for Precise Tracking Performanc X-Y Positioning System S. M. Raafat and R. Akmeliawati	e of 147

Chapter 3

OPTIMIZED LQR CONTROLLER SYNTHESIS FOR 3DOF HELICOPTER USING MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION (MODE)

Ismaila B. Tijani*, Rini Akmeliawati*, Ari Legowo**,

Asan G.A. Muthalif*

Intelligent Mechatronics Systems Research Unit,

*Department of Mechatronics Engineering,

**Department of Mechanical Engineering,

 $International\ Islamic\ University\ Malaysia$

Kuala Lumpur, Malaysia

Abstract

This chapter presents the formulation of LQR controller design as a Multiobjective optimization Problems (MOP) and discusses the application of
pareto-based Multiobjective Differential Evolution (P-MODE) technique to
address the challenges of design parameters selection in LQR synthesis. The
effectiveness of the proposed optimized LQR is validated on a laboratory
scale 3DOF helicopter system. The procedure was able to yield set of paretobased optimal controller solutions with satisfactory performances in terms of
both state and control regulations (in time-domain). Performance comparison
of the resulting MODE-LQR controller with an LQR controller supplied by
the manufacturer of the plant indicates the effectiveness of this approach for
better performances. This approach is expected to facilitate the design of
LQR especially for complex and high dimension problem like a helicopter
system in which the manual tuning usually proved to be tedious and timeconsuming.