EXPERIMENTAL METHODS IN MODERN BIOTECHNOLOGY

Editors

Ibrahim Ali Noorbatcha
Mohamed Ismail Abdul Karim
Hamzah Mohd Salleh

IIUM Press
EXPERIMENTAL METHODS IN MODERN BIOTECHNOLOGY

Editors

Ibrahim Ali Noorbatcha
Mohamed Ismail Abdul Karim
Hamzah Mohd Salleh

IIUM Press
CONTENTS

Preface

Chapter 1. Immobilization of Enzymes

Faridah Yusof

1. Introduction .. 1
2. Scope of This Chapter 1
3. Salient Features of Enzyme Immobilization 1
4. Advantages of Enzyme Immobilization 2
5. Disadvantages of Enzyme Immobilization 2
6. Methods of enzyme immobilization 2
 6.1 Adsorption Method 2
 6.2 Covalent Bonding Method 3
 6.3 Entrapment Method 3
 6.4 Copolymerization or Cross-Linking Method 4
 6.5 Encapsulation Method 4
 6.6 Carrier-Free Enzyme Immobilization 4
 6.6.1 Cross-Linked Dissolved Enzymes (CLE) 4
 6.6.2 Cross-Linked Enzyme Crystals (CLEC) 5
 6.6.3 Cross-Linked Enzyme Aggregates (CLEA) 5
7. Materials and Methods 5
 7.1 Immobilization of α-amylase by Entrapment 6
 7.2 Carrier-free immobilized enzymes - Cross-Linked Enzyme Aggregates (CLEA) 7
8. Notes and Tips .. 10
9. References ... 10
10. Further Readings 10

Chapter 2. Protein Extraction and Purification

Faridah Yusof

1. Introduction ... 11
2. Scope of This Chapter 11
3. Approaches to Protein Purification 12
 3.1 Development of Assay for the Protein 12
 3.2 Extraction of Protein from Sources 12
 3.3 Fractionation of Proteins 13
 3.3.1 Types of Column Chromatography Techniques 15

Azura Amid, Sulawatie Semail, Wan Dalila Wan Chik and Hammed Ademola Monsur

1. Introduction 25
2. Objective 25
3. Materials 26
4. Methods 27
 4.1 Preparation of 1L cell culture media 27
 4.2 Preparation of media with 10% fetal bovine serum (FBS) 28
 4.3 Preparation of 1L PBS-EDTA 28
 4.4 Resuscitation of Frozen Cell Lines 28
 4.5 Subculture of Adherent Cell Lines 28
 4.6 Cells Quantification 29
 4.7 Procedure to treat RAW 264.7 macrophage cells with identified extract 29
 4.8 Preparation of nitrite standards curve 30
 4.9 Griess Reaction 30
 4.10 Nitrite Concentration Determination 30
5. Example of Results Obtained 31
6. References 33
7. Further Reading 34
Chapter 4. Factors Affecting Enzyme Assays
Hamzah Mohd Salleh

1. Introduction to Enzyme Assay 35
 1.1 Factors That Affect Enzyme Activity 35
2. Objective of The Experiments 36
3. Materials 36
4. Enzyme Lab 1 37
 4.1 Effect of pH on Enzyme Activity 37
 4.1.1 Procedure 38
5. Enzyme Lab 2 39
 5.1 Effect of Temperature on Enzyme Activity and Enzyme Stability 39
 5.1.1 Procedure “A” 39
 5.1.2 Procedure “B” 39
6. Enzyme lab 3 40
 6.1 Effect of Substrate Concentration on Enzyme Rates 40
 6.1.1 Procedure 42
7. For Further Readings 45
8. Appendix 46

Chapter 5. Techniques of Extraction and Purification of Fucoxanthin from Brown Seaweeds
Irwandi Jaswir, Dedi Noviendri, Hamzah Mohd Salleh, Muhammad Taher and Kazuo Miyashita

1. Introduction 50
2. Materials 51
3. Methods 51
 3.1 Extraction of Fucoxanthin 51
 3.2 Purification of Fucoxanthin (with SiO2 Open Column Chromatography) 52
 3.3 Further Purification of Fucoxanthin (with ODS Double Column) 52
 3.4 Illustration of Extraction and Purification of Fucoxanthin from Brown Seaweeds 55
4. Notes 57
5. Acknowledgments 59
6. References 59
7. Appendix 62
Chapter 6. Fundamentals of Proximate Analysis in Food Products
Irwanid Jaswir and Asiyanti-Hamid Tawakali Tolupe

1. Introduction 65
2. Determination of Moisture and Total Solids 66
 2.1 Sample Preparation 66
 2.2 Evaporation Methods 66
 2.3 Distillation Methods (Dean and Stark Method) 67
 2.4 Chemical Reaction Methods 67
 2.4.1 Karl-Fisher method 67
 2.4.2 Gas production methods 68
3. Analysis of Ash Content 69
 3.1 Sample Preparation 69
 3.2 Dry Ashing 69
 3.3 Wet Ashing 70
4. Analysis of Fats 71
 4.1 Introduction 71
 4.2 Sample Selection and Preservation 71
 4.3 Determination of Total Fats Content 71
 4.3.1 Solvent Extraction 72
 4.3.1.1 Continuous Solvent Extraction Method: Goldfish Method 72
 4.3.1.2 Semicontinuous Solvent Extraction Method: Soxhlet Method 72
 4.3.2 Non solvent Liquid Extraction Methods 73
 4.3.2.1 Babcock Method 73
 4.3.2.2 Gerber Method 73
 4.3.2.3 Detergent Method 73
 4.3.3 Instrumental methods 73
5. Analysis of Proteins 74
 5.1 Determination of Overall Protein Concentration 74
 5.1.1 Kjeldahl method 74
 5.1.1.1 Digestion 74
 5.1.1.2 Neutralization 75
 5.1.1.3 Titration 75
 5.1.2 Enhanced Dumas method 75
 5.1.3 Methods using UV-visible spectroscopy 76
 5.1.3.1 Direct measurement at 280nm (Absorption Method) 77
 5.1.3.2 Biuret Method 77
 5.1.3.3 Lowry Method 77
 5.1.3.4 Dye binding methods 78
 5.1.3.5 Turbimetric method 78
6. Analysis of Carbohydrates 78
7. Analysis of Fiber 79
 7.1 Common Procedures of Sample Preparation 79
 7.2 Fiber Determination Method 79
Chapter 7. Fish Gelatin Production: Extraction Method and Quality Analysis
Irwandi Jaswir, Hammed A. Monsur and Hamzah M. Salleh

1. Introduction 81
2. Extraction of Gelatin 82
 2.1 Materials 82
 2.2 Methods 82
 2.2.1 Skin preparation 82
 2.2.2 Pretreatment 83
 2.2.3 Extraction 84
 2.2.4 Dehydration 84
3. Quantitative Analysis 87
 3.1 Gravimetric method 87
 3.2 Soluble protein content method 87
4. Quality Analysis 88
 4.1 Preparation of matured gelatin gel 89
 4.2 Gel Strength: definition and determination 89
 4.3 Measurement of Rheological Parameters 90
 4.4 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS- PAGE) 91
 4.5 The Foam test (Foam capacity and stability) 91
 4.6 Amino acid profiling 92
 4.7 Analysis of Color, Turbidity and clarity 92
5. References 93

Chapter 8. Application of Fourier Transform Infrared Spectroscopy Edible Fats and Oils Analysis
Mohamed Elwathig Saeed Mirghani

1. Introduction 96
 1.2 Analytical and Quality Control 97
 1.3 Fourier Transform Infrared (FTIR) Spectroscopy 97
 1.4 Fourier Transformation 98
 1.5 Transmission technique 98
 1.6 Attenuated total reflectance (ATR) 99
2. Methodology 99
 2.1 Sample preparations 100
 2.1.1 Gases Samples 100
Chapter 9. In Vitro Assay for Investigating Potential Anti-Cancer Agents Targeting at Metastatic Level

Yumi Zuhanis Has-Yun Hashim and Chris I.R. Gill

1. Introduction 115
2. Scope 115
3. Material 116
 3.1 Equipment/Apparatus/Softwares 116
4. Preparation 117
 4.1 Methods 117
5. Notes 118
6. Reference 120
7. List of Abbreviation 122
Chapter 10. Homology Modelling Of Pyranose-2-Oxidase from Phanerochaete Chrysosporium
Ibrahim Ali Noorbacha, Azratul Ashimah Nur Mohd Dom, Ahmad Sidqi Harithuddin and Hamzah Mohd Salleh

1. Introduction 123
2. Literature Review 124
 2.1 Biofuel and enzymatic biofuel cells 124
 2.2 Glucose oxidase 124
 2.3 Pyranose-2-oxidase 125
 2.4 Homology Modelling 125
3. Materials and Methods 126
 3.1 Homology project design 126
 3.2 Homology modeling 126
4. Result and Discussion 131
 4.1 Description of the results pairwise sequence 133
 4.2 Description of result pairwise sequence alignment 162
 4.3 Ramachandran plot statistics 139
5. Structure Validation 140
6. References 141

Chapter 11. Liquid-Liquid Extraction and its Application for Separation of Organic Acids
Parveen Jamal

1. Introduction 143
 1.1 Liquid-Liquid Extraction 143
 1.2 Principle of Extraction from Liquids 143
2. Notes and Tips 144
 2.1 Solvent Selection 144
 2.2 Properties of a good solvent 145
 2.3 Precautions 145
 2.4 Class of Organic Compounds and Solubility factor 145
 2.5 Principle of Extracting Different Compounds 146
 2.6 Salting Out 148
3. Experimental Part: Separation of acid from a mixture containing acid, base and 149
 3.1 Purpose 149
 3.2 Learning Objectives 149
 3.3 Techniques 149
4. Materials 149
5. Procedure 150
 5.1 Flow chart of Experimental Procedure 150
 5.2 Suggested Timetable 150
 5.3 Section A: Extraction of the Acid 151
Chapter 12. Response Surface Methodology (RSM) Design for Bioreactor Operation
Maizirwan Mel and Najiah Nadir

1. Introduction
 1.1 Design of Experiment
 1.2 Response Surface Methodology
 1.3 Central Composite Design
 1.4 Box-Behnken Design
 1.5 Analysis of Variance (ANOVA)
 1.6 Graphical Analysis
 1.7 Bioreactor Operation

2. Methodology
 2.1 Preparation of Bioreactor
 2.1.1 Optimization of Fermentation Parameters for Maximum Ethanol
 2.1.2 Optimization of Dyestuff Adsorption From Aqueous Solution Using
 2.2 Experimental Design
 2.2.1 Central composite design
 2.2.2 Box-Behnken Design

3. Results and Discussion
 3.1 Regression Equation
 3.1.1 Central composite design
 3.1.2 Box-behnken design
 3.2 Analysis
 3.2.1 Central composite design
 3.2.2 Box-Behnken Design
 3.3 Response Surface Curves
 3.3.1 Central composite design
 3.3.2 Box-Behnken Design

4. Conclusion

5. References

Chapter 13. Screening Natural Compounds for Antibacterial Activity by Disc Diffusion Method
Raha Ahmad Raus
1. Introduction 170
2. Materials 172
3. Methods 172
 3.1 Prepare bacterial inoculums 172
 3.2 Adjust inoculums turbidity 172
 3.3 Plating bacterial inoculums on plate 173
 3.4 Place disc on plate 173
 3.5 Measure inhibition zone and interpretation 173
4. Notes 175
5. References 175

Chapter 14. Indicator Microorganisms: Detection of Coliform and Escherichia coli
Mohamed Ismail Abdul Karim

1. Introduction 176
 1.1 Enumeration Methods 177
 1.2 Solid Media 177
2. Equipment and materials that are needed are as follows 177
3. Media and Reagents 178
4. Conventional Method for testing growth of coliforms, fecal coliforms and E. 178
 4.1 MPN – Presumptive test for coliforms, fecal coliforms and E.coli 178
 4.2 MPN - Confirmed test for coliforms 179
 4.3 MPN - Confirmed test for fecal coliforms and E. coli 180
 4.4 MPN - Completed test for E. coli. 180
 4.5 The IMViC Tests 181
 4.6 Solid medium method using Red Bile Agar - coliforms 182
 4.7 Membrane Filtration (MF) Method - coliforms 183
5. LST-MUG Method Used for Detecting E. coli in Chilled or Frozen Foods 183
6. References 184
7. Appendix 186

Chapter 15. Direct Nucleation Control: A Novel Approach for the Control of Crystal Size Distribution in Crystallization Processes
Mohd Rushdi Abu Bakar, Zoltan Karman Nagy, Ali Nauman Saleemi and Christopher David Rielly

1. Introduction 190
2. Materials 192
3. Methods 193
 3.1 Uncontrolled Anti-solvent Addition 193
 3.2 DNC by Anti-solvent/Solvent Addition 194
4. Notes 194
4.1 Uncontrolled Anti-solvent Addition 194
4.2 DNC by Anti-solvent/Solvent Addition 194
5. References 197
6. Further Reading 198
7. List of Abbreviation 198
CHAPTER 1:

Immobilization of Enzymes

Faridah Yusof

1. Introduction

As enzymes are biological catalysts that promote the rate of reactions but are not themselves consumed in the reactions, they may be used repeatedly for as long as they remain active. However, in most of the processes, enzymes are mixed in a solution with substrates and cannot be economically recovered after the reaction and are generally wasted. Thus, there is an incentive to use enzymes in an immobilized or insolubilized form so that they may be retained in a biochemical reactor for further catalysis. This is done by enzyme immobilization which may be defined as the process whereby the movement of enzymes, cells, organelles, etc. in space is completely or severely restricted usually resulting in a water-insoluble form of the enzyme.

2. Scope of This Chapter

This chapter is intended to be an introductory to enzyme or biocatalyst immobilization research. It starts with highlighting the salient features of enzyme immobilization, giving some advantages and disadvantages of this technique. A few methods of enzyme immobilization are discussed in brief; however the detailed version of each method can easily be assessed from many reviews, textbooks or journal papers. The author also includes the discussion of the carrier-free enzyme immobilization technique, a method which is recently becoming more popular, as it can offer the advantages of highly concentrated enzyme activity combined with high stability and low production cost owing to the exclusion of expensive carriers. The chapter ends by presentation of two enzyme immobilization methods, immobilization with carrier, entrapment, and another carrier-free, Cross-Linked Enzyme Aggregates (CLEA).

3. Salient Features of Enzyme Immobilization

Immobilized enzyme system has many good features. Some of the salient features of immobilized enzymes are as follows:

- The enzyme phase is the carrier phase which is water insoluble but hydrophilic porous polymeric matrix, e.g. agarose, cellulose, etc.
- The enzyme phase may be in the form of fine particulate, membranous, or microcapsule.
- The enzyme in turn may be bound to another enzyme via cross linking.
- A special module is produced employing immobilization techniques through which fluid can pass easily, transforming substrate into product and at the same time facilitating the easy removal of catalyst from the product as it leaves the reactor.
- The support or carrier utilized in immobilization technique is not stable at particular pH, ionic strength, or solvent conditions; hence, may be disrupted or dissolved releasing the enzyme component after the reaction.

From: Experimental Methods In Modern Biotechnology
Edited by: I. A. Noorbatch, H. M. Saleh and M. I. A. Karim. IIUM Press, KL, Malaysia