MALAYSIA NATURAL FIBRES FOR DIVERSED BIO-BASED APPLICATION

Editor
Hazleen Anuar

Co-Editor
Noorasikin Samat

Research Management Centre
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Preface

Overview On Malaysia Natural Fibers And Its Applications
Zuraida Ahmad, Nur Humairah Abdul Razak, Nunzan Omar, Farrah Yusoff

Potential Of Kenaf In Economic Perspectives
Nur Aimi Mohd Nasir, Mohd Adlan Mustafa Kamalbhin, Hazleen Anuar

Lightweight Kenaf Fibre Composite For Automotive Components
Hazleen Anuar

Malaysian Coir Fibre For Acoustical Absorption Cement Composite Panel
Zuraida Ahmad, Hadi Purwanto, Farrah Yusof

The Physical Properties Of Biomass Pellet From Mesocarp And EFB Fibre
Zahunn Halim, Norshazana Mohamad, Nabiha Mohd Noh

Hybrid Bio-nanocomposite Polyurethane Foam
Ernie Suzana Ali, Sahnim Hj Ahmad

Bamboo Laminated Products: A Green Material
Mohd Khairun Anwar Uyup, Hamdan Husain, Pandah Mat Tahir, Zaidon Ashaari

Hybrid Kenaf – Glass Fibre Bio-composite Based TPNR for Exterior Automotive Component
Wan Nozn Wan Busu, Mohd Romairnor Manshor, Rozaidi Rasid, Sahnim Hj Ahmad

Polylactic Acid Biocomposite For Food Packaging
Mohammad Rejaul Kaiser, Hazleen Anuar

Optimization Of Kenaf Biomass’s Pre-Treatment For Polylactic Acid’s Monomer Production.
Nurhaziah Seeni Mohamed, Nur Aimi Nasir, Mohd Adlan Mustafa Kamalbhin, Hazleen Anuar, Mairzirwan Met, Rashidi Othman

Appendix A: List Of Contributors

Appendix B: Editorial Board Members
Optimization Of Kenaf Biomass’s Pre-Treatment For Polylactic Acid’s Monomer Production

Nurhafizah Seeni Mohamed, Nur Aini Mohd Nasir, Mohd Adlan Mustafa Kamalbhinn, Hazleen Anuar, Maizirwan Mel, Rashdi Othman

CONTENTS
• Introduction
• Materials and Methods
• Determination of Best Pre-treatment Solvent
• Kenaf Core’s Optimization Process
• Kenaf Bast’s Optimization Process
• Conclusion
• References

Summary
Kenaf (Hibiscus cannabinus L) is a lignocellulosic material which is naturally resistant to breakdown to its structural sugars that will inhibit microorganisms to be accessed through. Since lignocellulosic materials have a complex structure, it needs to undergo several pre-treatment processes in order to liberate glucose. In this present research, the preferable pre-treatment method is chemical pre-treatment since it is more cost effective and environmental friendly compare to other existing method such as biological, physical, and physiochemical pre-treatment method. The main aim of this research is to select the best pre-treatment solvents for the maximum glucose production from kenaf biomass (core and bast), to optimize the pre-treatment condition for maximum production of glucose from kenaf core and its bast as well as to make a comparison between them. This study was planned to evaluate the potential of kenaf core and bast to be used as an alternative raw material for lactic acid production as it can be further contributed to the synthesis of biopolymer

Introduction
Lignocellulosic materials such as kenaf biomass which are kenaf core and kenaf bast contain many different components which include polysaccharides, protein, lignin, lipids and minerals. The major components are polysaccharides in the forms of cellulose (40 to 50%) and hemicellulose (25 to 30%) and lignin (25 to 30%) (Teter et al., 2006). Those materials are cellulose, hemicellulose and lignin which cause the lignocellulose to have a complex structure that cannot be directly converted into end products such as ethanol and lactic acid (Ren et al., 2007, Sun and Cheng, 2002). Therefore, lignocellulosic material must undergo two processes which are hydrolysis of cellulose in the lignocellulosic materials to fermentable reducing sugars, and fermentation of the sugars to lactic acid (Sun and Cheng, 2002).