MALAYSIAN NATURAL FIBRES FOR
DIVERSED BIO-BASED APPLICATION

Editor
Hazleen Anuar

Co-Editor
Noorasikin Samat
Contents

Preface v

Overview On Malaysia Natural Fibers And Its Applications 1
Zuraida Ahmad, Nur Humairah Abdul Razak, Nurzain Omar, Farrah Yusoff

Potential Of Kenaf In Economic Perspectives 21
Nur Aimi Mohd Nasir, Mohd Adlan Mustafa Kamalbhun, Hazleen Anuar

Lightweight Kenaf Fibre Composite For Automotive Components 29
Hazleen Anuar

Malaysian Coir Fibre For Acoustical Absorption Cement Composite Panel 39
Zuraida Ahmad, Hadi Purwanto, Farrah Yusof

The Physical Properties Of Biomass Pellet From Mesocarp And EFB Fibre 49
Zahunn Halim, Norshazana Mohamad, Nabiha Mohd Noh

Hybrid Bio-nanocomposite Polyurethane Foam 61
Ernie Suzana Ali, Sahrim Hj Ahmad

Bamboo Laminated Products: A Green Material 75
Mohd Khairun Anwar Uyup, Hamdan Husain, Pandah Mat Tahir, Zaidon Ashaari

Hybrid Kenaf – Glass Fibre Bio-composite Based TPNR for Exterior 85
Automotive Component
Wan Nozn Wan Busu, Mohd Romainor Manshor, Rozidi Rasid, Sahrim Hj Ahmad

Polylactic Acid Biocomposite For Food Packaging 99
Mohammad Rejaul Kaiser, Hazleen Anuar

Optimization Of Kenaf Biomass's Pre- Treatment For Polylactic Acid's 111
Monomer Production.
Nurhafizah Seeini Mohamed, Nur Aimi Nasir, Mohd Adlan Mustafa Kamalbhun, Hazleen Anuar, Mairzirwan Met, Rashidi Othman

Appendix A: List Of Contributors 121

Appendix B: Editorial Board Members 125
Lightweight Kenaf Fibre Composite for Automotive Component

Hazleen Anuar

CONTENTS
• Introduction
• Materials and Methods
• Tensile Properties
• Impact Strength
• Morphological Studies
• Conclusion
• References

Summary
Natural fibres for instance kenaf fibre (KF) can be used as reinforcements in composites in competition with other synthetic fibres. These fibres have excellent specific properties and have potential to be outstanding reinforcing fillers in polymers. The only drawback of natural fibres is the poor adhesion between the fibre and the polymer. This is due to dissimilar chemical nature, where natural fibre is hydrophilic in nature while polymer is generally hydrophobic. In order to develop composites with better mechanical properties, it is necessary to introduce hydrophilicity to the polymer by suitable surface modifications for example by introducing maleic anhydride-grafted-polypropylene (MAPP) in the composite.

Introduction
The emergence of thermoplastic elastomers (TPEs) is one of the most important developments in the area of polymer science and technology. TPEs are a new class of materials that combine the properties of vulcanised rubbers with ease of process ability of thermoplastics (Abdullah and Dahlan 1998). Thermoplastic elastomer can be prepared via blending of thermoplastic and elastomer at high shear rate. Thermoplastic for example polypropylene (PP), polyethylene (PE) and polystyrene (PS), while elastomer such as ethylene-propylene-diene-monomer (EPDM), natural rubber (NR), butyl rubber (BR) are among the materials used in thermoplastic elastomer blends.

Reinforcement materials are added to improve the mechanical properties and to reduce cost of the polymers. As a minor change in the processing parameters can influence the properties of polymers, they can be tailored according to the application by controlling the processing parameters (Folkes 1982). This flexibility makes plastics as the engineering materials for the future.

One of the factors that governed the performance of the reinforced composite is the type of fibre incorporated into thermoplastic matrix. Czigany (2006) investigated on hybrid effect of basalt, glass, carbon and hemp fibres reinforced PP as a function of fibre content and