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Abstract

This paper compares and also optimizes the surface finish in end milling of titanium alloy Ti-6Al-

4V using uncoated and PVD TiAlN coated carbide inserts under dry conditions. Response Surface 

Methodology (RSM) is utilized to develop an efficient mathematical model for surface roughness 

in terms of cutting speed, feed and axial depth of cut. For this purpose, a number of machining 

experiments based on factorial design of experiments method are carried out. The Center 

Composite Design (CCD) surface roughness models have been developed at 95% confidence 

level. The adequacy of the models has been verified through analysis of variance (ANOVA). Then 

the RSM models were further coupled with Genetic Algorithm (GA) to optimize the cutting 

conditions for getting achievable minimum surface roughness. The GA outcomes were further 

verified by experimental results. It was found that GA results matched successfully with the 

experimental data. Uncoated carbide insert was stumbled on as a better option than TiAlN coated 

carbide in terms of surface roughness.   

Keywords—Surface finish, Ti-6Al-4V, RSM model, Genetic Algorithm, PVD TiAlN 
Coated carbide.

1. Introduction

Materials used in the manufacturing of aero-engine components generally 

comprise nickel and titanium base alloys. These are referred to as difficult-to-cut 

materials since that pose a greater challenge to manufacturing engineers due to the 

high temperatures and stresses that are generated during their machining.  Cutting 

tool materials often encounter extreme thermal and mechanical stresses close to 

the cutting edge during machining, which usually results in plastic deformation 

and accelerated tool wear. A major requirement of cutting tool materials used for 

machining aero-engine alloys is that they must possess adequate hot hardness to 

withstand the elevated temperatures generated at high speed conditions of 
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aerospace alloys. Most cutting tool materials lose their hardness at elevated 

temperatures resulting in the weakening of the inter-particle bond strength and 

consequent acceleration of tool wear which results in deterioration of surface 

roughness. So it is very essential to establish an adequate functional relationship 

between the responses (such as surface roughness, tool life) and the cutting 

parameters (cutting speed, feed and depth of cut). Response surface methodology 

(RSM) may help in establishing the relationships between surface roughness and 

the cutting parameters for coated and uncoated inserts. The method was 

introduced by G.E.P Box and Wilson [1]. The main idea of RSM is to use a set of 

designed experiments to obtain an optimal response with limited number of 

experiments to save cost and time.

RSM is a dynamic and foremost important tool of design of experiment (DOE), 

wherein the relationship between response(s) of a process with its input decision 

variables is mapped to achieve the objective of maximization or minimization of 

the response properties [1,2]. Many machining researchers have used response 

surface methodology to design their experiments and assess results. Analytical 

models have been created to predict surface roughness and tool life in terms of 

cutting speed, feed and axial depth of cut in milling steel material [3] and [4]. An 

effective approach has also been presented to optimize surface finish in milling 

Inconel 718 [5].

Kaye et al [6] used response surface methodology in predicting tool flank wear 

using spindle speed change. A unique model has been developed which predicts 

tool flank wear, based on the spindle speed change, provided the initial flank wear 

at the beginning of the normal cutting stage is known. Wu [7] first pioneered the 

use of response surface methodology in tool life testing.

Thomas et al. [8] used a full factorial design involving six factors to investigate 

the effects of cutting and tool parameters on the resulting surface roughness and 

on built-up edge formatting in the dry turning of carbon steel. The Taguchi 

method was used by Yang and Tarng [9] to find the optimum cutting parameters 

for turning operations. Choudhury and El-Baradie [10] had used RSM and 23

factorial design for predicting surface roughness when turning high-strength steel. 

Mansour et al [3] developed a surface roughness model for end milling of semi-

free cutting carbon case-hardened steel. They suggested that an increase in either 

the feed or axial depth of cut increases the surface roughness, while an increase in 
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the cutting speed decreases the surface roughness. S. Shrif et al. [11] used 

factorial design coupled with response surface methodology in developing the 

surface roughness model in relation to the primary machining variables such as 

cutting speed, feed and radial rake angle. Thiele and Malkote [12] had used a 

three-factor complete factorial design to determine the effects of workpiece 

hardness and cutting tool edge geometry on surface roughness and machining 

forces.

The main objective of the current work was to develop RSM models for surface 

roughness based on cutting speed, axial depth of cut and feed for uncoated and 

coated inserts and then coupling GA with the developed RSM model to optimize 

the cutting conditions to search out the minimum surface roughness.

2. Materials and Methods

In this work, experimental results were used for modeling using RSM. The 

experimental data were utilized to generate mathematical models of second-order. 

Then the mathematical models were taken as objective function and were 

optimized using a Genetic Algorithm approach to search out the machining 

conditions for the best surface finish. 

2.1 RSM Mathematical Model

RSM explores the relationships between several explanatory variables and one 

or more response variables [2]. The following linear relationship could be 

considered for achieving this:

 ),,( favfy

The surface roughness model for end milling in terms of the cutting parameters 

can be expressed in general terms as:

lmk
a faCVR                                                           (1)

Where Ra is the predicted surface roughness (µm), V is the cutting speed 

(m/min), f is the feed ( mm/tooth), and a is the axial depth of cut (mm), C, k, l and 

m are model parameters to be estimated using the experimental results. To 

determine the constants and exponents, this mathematical model can be linearized 

by employing a logarithmic transformation and Equation (1) can be re-expressed 

as:
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flamVkCRa lnlnlnlnln                                      (2)     

The linear model of equation (2) is:

33221100 xxxxy                                         (3)

Where y is the true response of surface roughness on a logarithmic scale and 

x0=1(dummy variable); x1, x2, x3 are logarithmic transformations of speed, depth 

of cut and feed, respectively; while 0 ,  0 , 0  and 0 are the parameters to be 

estimated. Equation (3) can be expressed as:

332211001ˆ xbxbxbxbεyy                        (4)      

Where 1y


and y are the estimated response and the measured surface roughness 

on a logarithmic scale respectively,  is the experimental error and the b values 

are estimates of the  parameters.

The second-order model can be extended from the first-order model equation 

as:

322331132112
2
333

2
222

2
111332211002

       

ˆ

xxbxxbxxbxbxb

xbxbxbxbxbεyy




                  (5)

Where 2y


is the estimated response based on the second order model. Analysis 

of variance is used to verify and validate the model. 

2.2 Optimization by Genetic Algorithm

Genetic Algorithms are search algorithms for optimization, based on the 

mechanics of natural selection and genetics [13]. The mechanics of GA is simple, 

involving copying of binary strings and the swapping of the binary strings. The 

simplicity of operation and computational efficiency are the two main attractions 

of the GA approach. The GA solves optimization problem iteratively based on 

biological evolution process in nature (Darwin’s theory of survival of the fittest) 

[13]. 

Figure 1.  Interfacing of Experimental results, RSM Models and GA

The optimization problem in this study is solved by coupling the developed 

RSM model with the developed GA as shown in Figure 1. In the solution 

Experimental 

Results

RSM 

Models

Genetic 

Algorithm
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procedure of an optimization problem with GA begins with a set of parameter 

values or “chromosomes” (usually in the form of bit strings) which are randomly 

generated or selected. The entire set of these chromosomes comprises a 

“population”. The chromosomes evolve during several iterations or “generations”. 

New generations called “offspring” are generated using the “crossover” and 

“mutation” technique. Crossover involves splitting two chromosomes and then 

combining one-half of each chromosome with the other pair. Mutation involves 

flipping a single bit of a chromosome.  The chromosomes are then “evaluated” 

using certain “fitness” criteria and the best ones are kept while the others are 

discarded. This process repeats until one chromosome has the best fitness and is 

taken as the best solution of the problem. 

GA is very appealing for single and multi-objective optimizations problems. 

Some of its advantages are as follows: (1) as it is not based on gradient-based 

information, it does not require the continuity of convexity of the design space, 

(2) it can explore large search space and its search direction or transition rule is 

probabilistic, not deterministic, in nature, and hence, the chance of avoiding local 

optimality is more, (3) it works with a population of solution points rather than a 

single solution point as in conventional techniques, and provides multiple near-

optimal solutions, (4) it has the ability to solve convex, and multi-model function, 

multiple objectives and non-linear response function problems, and it may be 

applied to both discrete and continuous objectives functions [14].

3. Experimental Details

End milling tests were conducted on Vertical Machining Center (VMC ZPS, 

Model: 1060) with full immersion cutting under dry conditions. Machining was 

performed with a 20 mm diameter end-mill tool holder fitted with one insert. 

Uncoated and TiAlN coated inserts were used in the experiments. Mitutoyo 

SURFTEST SV-500 was used to measure the surface roughness.

3.1 Cutting Tool

Two typed of carbide inserts were used in this study. One was uncoated carbide 

insert (model: R390-17 04 08E-NL H13) and the other was TiAlN coated carbide 

(model R390-11 T3 08E-ML2030) from Sandvick coromill. These two inserts 

were selected from Sandvik Coromant tool catalogue [15].  
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3.2 Cutting Conditions

Cutting parameter values i.e. cutting speed, axial depth of cut, feed were 

selected within specific ranges. These independent variables were then coded 

taking into consideration the limitation and capacity of the cutting tools. Levels of 

independent cutting variables and coding identification for the experiment using 

uncoated and coated inserts are presented in Table 1. 

The independent variables were then coded to the levels using the following 

transformation equation:

01

0

lnln

lnln

nn

nn

xx

xx
x




                              (6)

Where x  is the coded value of any factor corresponding to its natural value nx , 

while 1nx is the +1 level and 0nx is the natural value of the factor corresponding to 

the base of zero level.

Table 1. Coding identification of independent variables

Levels Lowest Low Center High Highest

Coding 2 1 0 1 2

1x Cutting speed,

V(m/min)
30.59 39 70.1 126 160.6

2x axial depth of 

cut, a (mm)
0.5 0.61 1 1.65 2.03

     3x Feed, 

f (mm/tooth)
0.05 0.06 0.088 0.128 0.15

3.3 Experimental Design

   In the experiment, full central composite design (CCD) was used to develop the 

first order and second order models. The analysis of mathematical models was 

carried out using Design of Expert 6.0.8 package for both the first and second 

order models.

4. Results and Model Developments

Cutting conditions and the measured surface roughness values for all the cutting 

tests are shown in the Table 2. From the results it was found that the surface 
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roughness values for the coated inserts were in most cases inferior compared to 

those obtained with the uncoated. 

Table 2 Cutting conditions in coded form and surface roughness results

Coding of Level
Ra,

Surface roughness ( m )
Exp.

No.

1x 2x 3x UNCOATED COATED

1 -1.00 -1.00 -1.00 0.17 0.22

2 1.00 -1.00 -1.00 0.33 0.31

3 -1.00  1.00 -1.00 0.38 0.24

4 1.00 1.00 -1.00 0.33 0.45

5 -1.00 -1.00 1.00 0.33 0.44

6 1.00 -1.00 1.00 0.41 0.64

7 -1.00  1.00 1.00 0.37 0.59

8 1.00 1.00 1.00 0.4 0.69

9 0.00 0.00 0.00 0.19 0.32

10 0.00 0.00 0.00 0.24 0.35

11 0.00 0.00 0.00 0.23 0.33

12 0.00 0.00 0.00 0.27 0.39

13 -1.41 0.00 0.00 0.23 0.30

14 1.41 0.00 0.00 0.61 0.62

15 0.00 -1.41 0.00 0.2 0.41

16 0.00 1.41 0.00 0.23 0.48

17 0.00 0.00 -1.41 0.17 0.25

18 0.00 0.00 1.41 0.5 0.76

Figure 2 shows the comparison between these two sets of surface roughness 

data. Though the roughness values are higher in case of coated inserts but the 

trend of the graph for both the coated and uncoated are similar. This similar 

fashion of the graphs implies that the effects of the independent cutting variables 

are similar.   
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Figure 2. Comparison between surface roughness values using coated and uncoated carbide inserts

4.1 Development of first-order model

 The surface roughness prediction model for uncoated carbide inserts was been 

formulated by utilizing the experimental results in Table 2. The developed first-

order CCD model in coded form is:

3211 21.0083.018.024.1 xxxy uncoated 
                   (7)

By substituting the values of x from the transformation Equation (6) into 

Equation (7) the following equation for Ra for uncoated carbide inserts is 

generated:

560.01657.0307.0
_ 3065.0 faVR uncoateda             (8)

ANOVA was used to verify the adequacy of the proposed first-order CCD 

model and the results are shown in the Table 3. The Model F-Value of 4.071 

implies that the model is significant. There is only 3.05% chance that a “Model F-

Value” this large could occur due to noise. The “lack of Fit F-value” of 5.363 

implies that the lack of fit is not significant relative to the pure error. There is a 

9.68% chance that a “Lack of Fit F-Value” this large could occur due to noise. 

Non- significant lack of fit is good. Therefore, we can use the model to navigate 

the response surface. 
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Table 3. ANOVA for first order model using uncoated insert

Source SS a DF b MS c F Value Prob > F

Block 0.002 1 0.002

Model 1.135 3 0.378 4.071 0.0305 significant

1x 0.442 1 0.442 4.759 0.0481

2x 0.093 1 0.093 1.005 0.3345

3x 0.599 1 0.599 6.448 0.0247

Residual 1.208 13 0.093

Lack of Fit 1.144 10 0.114 5.363 0.0968
not 

significant

Pure Error 0.064 3 0.021

Cor Total 2.345 17

a Sum of Squires

b Degree of Freedom

c Mean Square

For TiAlN coated carbide inserts the first-order surface roughness prediction 

model was also developed by using the experimental results in Table 2 which, in 

coded form, is:

3211 34.0087.021.089.0 xxxy coated 
                      (9)

By substituting the values of x from the transformation Equation (6) into 

Equation (9) the following equation for Ra for coated carbide inserts is found: 

904.0174.0358.0
_ 813.0 faVR coateda 

                                   (10)

Again ANOVA is utilized for the verification of the developed model of surface 

roughness using TiAlN coated carbide and the results are revealed in the Table 4. 

The model F-Value of 57.4092 indicates the model is significant. There is only a 

0.001% chance that a “Model F-Value” this large could arise due to noise. The 

“lack of Fit F-value” of 1.9943 insinuates the lack of fit is not significant relative 

to pure error. There is a 31.03% chance that a “Lack of Fit F-Value” this large 

could occur due to noise. 

The first-order CCD models of both uncoated and coated one in Equation (8) 

and Equation (10) respectively revealed that feed has the most significant effect 

on surface roughness, followed by cutting speed and axial depth of cut. The trend 

is the same for both the uncoated and coated inserts.
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Table 4. ANOVA for first order model using PVD TiAlN coated insert

Source SS DF MS F Value Prob > F

Block 0.0604 1 0.0604

Model 2.3099 3 0.7700 57.409 < 0.0001 significant

1x 0.5819 1 0.5819 43.386 < 0.0001

2x 0.1035 1 0.1035 7.7141 0.0157

3x 1.6245 1 1.6245 121.13 < 0.0001

Residual 0.1744 13 0.0134

Lack of Fit 0.1516 10 0.0152 1.9943 0.3103
not 

significant

Pure Error 0.0228 3 0.0076

Cor Total 2.5447 17

The first-order models of Equation (7) and Equation (9) are utilized to draw the 

graph of actual and predicted surface roughness values for the uncoated and 

coated carbide inserts which is shown in Figure 3. It is found from Figure 3 that 

the predicted values from the first order model of the coated carbide are closer to 

the actual values and the model performs better than the uncoated one.  

Actual vs. predicted values 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
trial runs

R
a

Actual values for Uncoated carbide inserts
Predicted values for Uncoated carbide inserts
Actual values for coated inserts
Predicted values for coated inserts

Figure 3.  Actual Vs. Predicted values of surface roughness from first order model for coated and 

uncoated inserts.

4.2 Development second-order model

The second-order surface roughness model was also developed by utilizing the 

experimental results in Table 2 and employing the Center Composite Design of 

Response Surface Methodology. The second-order model for the uncoated 
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carbide inserts is given as:

3231

21
2
3

2
2

2
1

3212

089.0028.0

12.013.0018.021.0

21.0083.018.053.1

xxxx

xxxxx

xxxy uncoated






                    (11)

To verify the adequacy of the proposed second order CCD model, ANOVA was 

employed and the results are shown in the table 5. The model F-Value of 4.1183 

entails the model is significant. There is only 3.77% chance that a “Model F-

Value” this large could happen due to noise. The “Lack of Fit F-Value” of 3.6119 

makes it not significant relative to pure error and there is a 15.99% chance that a 

“Lack of Fit F-Value” this much could occur due to noise.  

Table 5. ANOVA for second-order model for uncoated insert

Source SS DF MS F Value Prob > F

Block 0.0022 1 0.0022

Model 1.9705 9 0.2189 4.1183 0.0377 significant

1x 0.4423 1 0.4423 8.3190 0.0235

2x 0.0934 1 0.0934 1.7560 0.2267

3x 0.5991 1 0.5991 11.269 0.0121

2
1x 0.5529 1 0.5529 10.400 0.0146

2
2x 0.0037 1 0.0037 0.0693 0.7999

2
3x 0.1907 1 0.1907 3.5875 0.1001

21xx 0.1113 1 0.1113 2.0930 0.1912

31xx 0.0065 1 0.0065 0.1214 0.7378

32 xx 0.0638 1 0.0638 1.2009 0.3094

Residual 0.3721 7 0.0532

Lack of Fit 0.3082 4 0.0770 3.6119 0.1599
not 

significant

Pure Error 0.0640 3 0.0213

Cor Total 2.3448 17

The second-order model for the coated carbide inserts was also generated by 

utilizing the results in the Table 2 which is as below:
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                     (12)

Then the developed second-order RSM model in Equation (12) for surface 

roughness using TiAlN coated carbide inserts was verified by the ANOVA test. 

The results of that ANOVA test are given in Table 6. The model F-Value of 

30.3458 means the model is significant and the chance that a “Model F-Value” 

this high could happen due to noise is only 0.01%.The “Lack of Fit F-Value” is 

1.2923 which is not significant relative to pure error and there is a 43.38% 

possibility that “Lack of Fit F-Value” this large could occur due to noise. 

Table 6. ANOVA for second-order model for PVD TiAlN coated insert

Source SS DF MS F-Value Prob > F

Block 0.0604 1 0.0604

Model 2.4221 9 0.2691 30.3458 < 0.0001 significant

1x 0.5819 1 0.5819 65.6116 < 0.0001

2x 0.1035 1 0.1035 11.6657 0.0112

3x 1.6245 1 1.6245 183.176 < 0.0001

2
1x 0.0298 1 0.0298 3.3654 0.1092

2
2x 0.0430 1 0.0430 4.8467 0.0636

2
3x 0.0345 1 0.0345 3.8922 0.0891

21xx 0.0001 1 0.0001 0.0109 0.9199

31xx 0.0359 1 0.0359 4.0433 0.0843

32 xx 0.0043 1 0.0043 0.4898 0.5066

Residual 0.0621 7 0.0089

Lack of Fit 0.0393 4 0.0098 1.2923 0.4338
not 

significant

Pure Error 0.0228 3 0.0076

Cor Total 2.5447 17

Second-order surface roughness models of Equation (11) and Equation (12) are 

exploited to draw the contours of actual and predicted surface roughness values 
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for the uncoated and coated carbide inserts which is shown in Figure 4.  It is 

found from Figure 3 and Figure 4 the second-order models have a better 

performance if compared with the first-order models in terms of prediction 

accuracy.
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Figure 4.  Actual Vs. Predicted values of surface roughness from second-order model for coated 

and uncoated inserts.

5. Optimization of cutting conditions

The aim of the optimization is to achieve the minimum possible surface 

roughness value. This can be achieved efficiently by adjusting cutting conditions 

with the help of an appropriate numerical optimization method. For this, 

minimization of surface roughness problem must be formulated in the standard 

mathematical format as below:

 Find: v, a, f

Minimize: Ra (v,a,f)

Within ranges:

128.006.0;65.161.0;12639  faV
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Table 7. Selected values of the critical parameters of GA

Subject Values
Population size 80

Scaling function Rank
Selection of function for mating Stochastic uniform

Crossover function Scattered
Crossover fraction 0.8

Mutation
Function

Scale
Shrink

Gaussian
1.0
1.0

Stopping criteria
Generation 250

The second-order quadratic RSM models for surface roughness was chosen as a 

fitness function for Genetic Algorithm (GA) for both uncoated and coated carbide 

inserts because it was found the developed second-order RSM model had a better 

performance than the first-order

5.1 Optimization by GA

In this work, MATLAB version 7.4.0.287 (R2007a) Toolbox for GA is utilized 

to develop the GA program [16]. The critical parameters in GA are the size of the 

population, mutation, number of generations etc. The values of these parameters 

which were selected for this problem are given in Table 7.  The developed 

quadratic CCD models of Equation (11) and Equation (12) are used as fitness 

functions for the GA. The GA program written is MATLAB programming 

language selects chromosomes based on the objective values. 

Table 8. Results of GA with experimental measurements

Type of insert Optimum cutting conditions by GA Surface Roughness (Ra)

Cutting Speed (m/min) 44.33

Axial DoC (mm) 0.61Uncoated 

carbide
Feed (mm/tooth) 0.0605

GA 

Predicted 

0.150 m

Experimental

Measurement

0.138 m

Cutting Speed (m/min) 39.08

Axial DoC (mm) 0.622
TiAlN coated 

carbide
Feed(mm/tooth) 0.0605

GA 

Predicted

0.204 m

Experimental

Measurement

0.197 m
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5.2 Optimization results and discussions

The optimization problem was solved for both the uncoated and coated carbide 

insert. The best and mean fitness values for all the iterations of 250 generations 

for uncoated and coated insert are given in Figure 5(a) and Figure 5(b) 

respectively. The optimum cutting conditions and the predicted surface roughness 

generated by GA is given in Table 8. If we compare the results of GA with the 

minimum surface roughness values in the initial cutting conditions in Table 2 we

find that for uncoated carbide insert GA reduced the surface roughness from 0.17 

µm to 0.15 µm by about 12% and for coated insert it reduced from 0.22 µm to 

0.204 by more than 9%. Then the results of GA were further verified by 

experimental tests. It was found the experimental results closely resembled the 

predicted one. For the uncoated carbide insert the difference between the 

predicted and the experimental result was 8% but for coated carbide insert it was 

less that 3.5%. 
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Figure 5. Best and Mean fitness values of GA for (a) uncoated carbide insert and (b) TiAlN coated 

carbide insert. 

6. Conclusion

Based on the statistical models developed in the work    following concluding 

remarks can be made:

1. The full CCD second-order quadratic model has been proved to be a 

successful technique to predict the surface roughness produced in end-

milling of titanium alloy Ti-6Al-4V using coated and uncoated carbide 

inserts under dry conditions.

2. The first and second order CCD model developed by RSM using Design 

Expert package was able to provide accurately predicted values of surface 

roughness close to actual values found in the experiments. The equation was 

checked for their adequacy with a confidence level 95%. 

3. The models (for both coated and uncoated inserts) indicate that the feed has 

the most significant influence on surface roughness, followed by cutting 

speed and axial depth of cut. 

4. Interaction effect between cutting speed and feed also has a high effect on 

surface roughness values.

5. The surface roughness values of the coated inserts were higher than the 
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uncoated one. This may be due to the presence of built up edge (BUE) 

which forms on the TiAlN coated tool. 

6. The developed second-order RSM models were interfaced with GA to find 

the optimum cutting conditions leading to the least surface roughness values 

within the ranges. GA improved the surface roughness by about 12% for 

uncoated and 9% for coated insert. The predicted optimum cutting 

conditions were verified with experimental measurements and it was found 

that GA prediction correlates successfully with the experimental results. 

This establishes the optimization methodology proposed in this study by 

interfacing the developed RSM model and the GA is an effective tool to 

optimize the cutting conditions.
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