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Abstract 

In this work, an artificial neural network (ANN) 
model was developed for the investigation and 
prediction of the relationship between cutting 
parameters and surface roughness during high speed 
end milling of nickel-based Inconel 718 alloy. The 
input parameters of the ANN model are the cutting 
parameters: cutting speed, feed, and axial depth of cut. 
The output parameter of the model was surface 
roughness. For this interpretation, advantages of 
statistical experimental design technique, experimental 
measurements, artificial neural network were exploited 
in an integrated manner. Cutting experiments are 
designed based on statistical three-level full factorial 
experimental design technique. A predictive model for 
surface roughness was created using a feed-forward 
back-propagation neural network exploiting 
experimental data. The network was trained with pairs 
of inputs/outputs datasets generated when end milling 
Inconel 718 alloy with single-layer PVD TiAlN coated 
carbide inserts. A very good predicting performance of 
the neural network, in terms of concurrence with 
experimental data was attained. The model can be 
used for the analysis and prediction for the complex 
relationship between cutting conditions and the 
surface roughness in metal-cutting operations and for 
the optimization of the surface roughness for efficient 
and economic production.    

I.  INTRODUCTION 

Surface roughness is one of the important factors for 
evaluating workpiece quality during the machining 
process because the quality of surface roughness affects 
the functional characteristics of the workpiece such as 
compatibility, fatigue resistance and surface friction.  
The factors that affect the surface roughness during the 
end milling process include tool geometry, feed rate, 
depth of cut and cutting speed.  

 Several researchers have studied the end milling 
process in the recent years. The researchers also used 
response surface methodology (RSM) to explore the 
effect of cutting parameters as cutting speed, feed rate 
and axial depth of cut. Alauddin et al. [1] developed a 
mathematical model to predict the surface roughness of 
steel after end milling. The prediction model was 
expressed via cutting speed, feed rate and depth of cut. 
Fuh and Hwang [2] used RSM to construct a model 
that can predict the milling force in end milling 
operations. But as the machining process is nonlinear 
and time-dependent, it is difficult for the traditional 
identification methods to provide an accurate model. 
Compared to traditional computing methods, the 
artificial neural networks (ANNs) are robust and 
global. ANNs have the characteristics of universal 
approximation, parallel distributed processing, 
hardware implementation, learning and adaptation, and 
multivariable systems [3]. ANNs have been extensively 
applied in modeling many metal-cutting operations 
such as turning, milling, and drilling [4-6]. However, 
this study was inspired by the very limited work on the 
application of ANNs in modeling the relationship 
between cutting conditions and the surface roughness 
during high-speed end milling of nickel-based, Inconel 
718, alloy.  

II.   ARTIFICIAL NEURAL NETWORK DESIGN 

Supervised neural network was developed in this 
study for the prediction of surface roughness in end 
milling process and its performance was tested. The 
network was back propagation neural network (BP) 
with log-sigmoid transfer function in hidden layers and 
linear transfer functions in the output layers. The neural 
network architecture used in this study is shown in 
Figure1. It was designed using MATLAB Neural 
Network Toolbox [7]. The network consists of one 
input, two hidden and one output layers. Hidden layers 
have 15 neurons each, whereas input and output layers 



have three and one neurons, respectively. Neurons in 
the input layers correspond to cutting speed (vc), feed 
(f) and axial depth of cut (a). Output layer corresponds 

to surface roughness (Ra).        
 

 

 
Figure 1.  ANN architecture designed  

 

III.  EXPERIMENTAL DATA FOR TRAINING THE ANN 

A. Experimental Set-up 

A typical range of machining parameters is selected 
and experimental data over this whole range is 
conducted and identified as training and testing data 
sets for the neural network. For the experimentation, 
Vertical Machining Center (VMC ZPS, Model: MLR 
1040) was used for end milling process, which was 
carried out with a constant redial depth of cut (ar) 5 mm 
under dry conditions. TiAlN coated carbide insert of 
model ML2031 of CoroMill 390 end mill with 20 mm 
diameter was selected from the Sandvik Coromant tool 
catalogue [8]. The surface roughness of Inconel 718 
was measured by Mitutoyo SURFTEST SV-500. 

In this work, down milling method was employed in 
end milling process due to some advantages such as 
better surface finish, less heat generation, larger tool 
life, better geometrical accuracy and compressive 
stresses favourable for carbide edges [9]. 

B. Cutting Parameters and Sets of Experiments 

Cutting conditions were chosen by an appropriate 
selection of cutting parameter values within specific 
ranges as recommended by the technical guide of 
Sandvik coromant [10]. Of these parameters, spindle 
speed, feed and axial depth of cut have been varied in 
current experiments and surface roughness was 
recorded. Other parameters such as radial depth of cut, 
rake angle, tool diameter, etc. were kept constant for the 
scope of the study. Three values were selected for each 
parameter and three-level full factorial design of 

experiments (DOE) was used, which gave 27 (33) 
experiments. The details of these selected values of the 
parameters are given below: 

1. Cutting Speed (mm/min): 20, 30 and 40. 

2. Feed (mm/tooth): 0.04, 0.075 and 0.11. 

3. Axial Depth of cut (mm): 0.4, 0.6 and 0.8, 

Redial Depth of cut was kept constant at 5 mm (quarter 
immersion) throughout this study. The experimental 
results for all the 27 experiments are given in Table 1. 

C. Data Pre-processing 

Since only a limited number of experiments are 
representative of the feasible parameter space, it is 
important that the ANN realizes each set fully [11]. 
This is achieved by normalizing the data as follows, 
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Where, N: normalized value of the real variable; Nmin 
and Nmax: minimum and maximum values of 
normalization, respectively; R: real value of the 
variable; Rmin and Rmax: minimum and maximum values 
of the real variable, respectively.  

IV.   ANN MODEL DEVELOPMENT 

A. Training the ANN model 

Before the ANN can be trained and mapping 
learned, the experimental data was processed into 
patterns. So Training, validation and testing pattern 
vector had been formed before the ANN was trained. 
Each pattern was formed with an input condition 
vector, 
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The back-propagation learning algorithm was used 
for training the network. For training the network, the 
TRAINLM function of MATLAB was utilized which 
works on back propagation algorithm [11]. These 
algorithms iteratively adjust the weights to reduce the 
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error between the experimental and predicted outputs 
of the network. The 27 experimental results, which are 
shown in Table 1, were used for this training. 
TRAINLM updates weights so as to minimize the mean 
square error (MSE) between the network prediction 
and training data set. 

 
TABLE 1: EXPERIMENTAL RESULTS TO TRAIN THE ANN MODEL 

 

 
no. 

Cutting speed 
(mm/min) 

Feed 
(mm/tooth) 

Axial DoC 
(mm) 

Surface 
finish (Ra) 

1 20 0.04 0.4 0.045 

2 20 0.04 0.6 0.031 

3 20 0.04 0.8 0.020 

4 20 0.075 0.4 0.077 

5 20 0.075 0.6 0.077 

6 20 0.075 0.8 0.066 

7 20 0.11 0.4 0.110 

8 20 0.11 0.6 0.138 

9 20 0.11 0.8 0.134 

10 30 0.04 0.4 0.084 

11 30 0.04 0.6 0.057 

12 30 0.04 0.8 0.038 

13 30 0.075 0.4 0.087 

14 30 0.075 0.6 0.090 

15 30 0.075 0.8 0.076 

16 30 0.11 0.4 0.092 

17 30 0.11 0.6 0.118 

18 30 0.11 0.8 0.122 

19 40 0.04 0.4 0.103 

20 40 0.04 0.6 0.071 

21 40 0.04 0.8 0.046 

22 40 0.075 0.4 0.080 

23 40 0.075 0.6 0.080 

24 40 0.075 0.8 0.070 

25 40 0.11 0.4 0.069 

26 40 0.11 0.6 0.087 

27 40 0.11 0.8 0.089 

 
When the network training was successfully finished, 
the network was tested with additional test data.   

B. Adapting and Testing of the Developed model 

In order to further assess the predicting efficiency of 
the developed ANN model, 18 more random 
experiments were conducted. First 10 experimental 
results from that were utilized to further adapt the 
developed ANN model and the remaining 8 
experimental results for different surface roughness 
values were compared with the ANN model predicted 

values and the error was found less that 12%.  It was 
considered reasonable, taking into account that there is 
inherent randomness in metal cutting process. 

V.  SIMULATED RESULTS OF DEVELOPED ANN MODEL 

The developed ANN model can predict surface 
roughness based on the cutting conditions, with a high 
degree of accuracy within the scope of cutting 
conditions investigated in the study. Hence, the 
influence of the cutting conditions on the surface 
roughness can be studied using the model. 

A. Effect of cutting speed on surface roughness 

Cutting speed is one of the most important cutting 
parameters in metal-cutting operations and it is very 
influential on surface roughness as shown in Figure 
3(a). At a very low cutting speed it has a adverse effect 
on surface finish, but after a certain speed the surface 
finish improves with cutting speed. But if cutting speed 
is increased further then at high speed it does not have 
much effect on surface roughness. At very low speed 
the cutting force is very high because of low cutting 
temperature which may have an adverse effect on 
surface finish. At high cutting speed the cutting 
temperature goes up and which eventually reduces the 
cutting force drastically. That is the cause for better 
surface finish at higher cutting speed. So, too low 
cutting speed should be avoided in end milling 
operation in Inconel 718 for its adverse effect on 
surface finish.   

B. Effect of Feed on surface roughness 

Feed plays a dominant role on surface finish as 
shown in the fig 3(b). At very low feed it has a sharp 
adverse effect on surface roughness until a certain feed 
value. After that surface finish remains somewhat 
constant with feed. But at even higher feed it affects 
surface roughness unfavorably. At very low feed the 
strain hardening effect in Inconel 718 is believed to be 
very high which might be the reason of poor surface 
finish at very low feed.    

C. Effect of Axial Depth of Cut on surface roughness 

Axial Depth of cut does not have a very significant 
effect on surface roughness as shown in fig 3(c). 
Initially at a very low axial depth of cut, it has slightly 
unfavorable effect on surface roughness. But there is a 
optimum axial depth of cut for minimum surface 
roughness. But, in general, Axial Depth of cut does not 
have that significant effect on surface roughness while 
end milling of Inconel 718 as the cutting speed and 
feed have.    
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Figure 2.  Simulation of surface roughness at varying (a) cutting 
speed,(b) feed, (c) axial depth of cut.  

 

VI.  CONCLUSIONS  

The multilayer network with two hidden layers 
having 15 ‘log-sigmoid’ neurons trained with 
TRAINLM algorithm was found to be the optimum 
network for the model developed in this study. A good 
performance was achieved with the neural model as the 
error between the model prediction and experimental 
values ranging from 1.07% to 8.3%. So this developed 
ANN model can now be used to analysis and predict 
the surface roughness for different cutting conditions 
while end milling of Inconel 718. The surface 
roughness can be further optimized by coupling this 
ANN model with Genetic Algorithm (GA) or other 
optimization methods. Such ANN model can also be 
developed to predict other process parameters such as 
cutting force, tool life etc.  
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