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Abstract: In the present paper, we study stability of the dynamical system corresponding quantum
Markov chain (QMC) associated with the Ising model on Cayley tree of order two. To study certain
properties of QMC we reduce our investigation to the study of dynamics of a nonlinear dynamical
system. For such a dynamical system it is proved existence of exactly three fixed points and absence
of periodic points. Moreover, it is established finiteness and infiniteness of the trajectory of the
system. 
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INTRODUCTION

It is know that Markov fields play an important role in classical probability, in physics, in biological and
neurological models and in an increasing number of technological problems such as image recognition.
Therefore, it is quite natural to forecast that the quantum analogue of these models will also play a relevant
role. The quantum analogues of Markov processes were first constructed in (Accardi, L., 1975), where the
notion of quantum Markov chain on infinite tensor product algebras was introduced. Nowadays, quantum
Markov chains have become a standard computational tool in solid state physics, and several natural
applications have emerged in quantum statistical mechanics and quantum information theory. The reader is
referred to (Accardi, L., F. Fidaleo, 2003; Accardi, L., F. Fidaleo, 2003; Fidaleo, F., F. Mukhamedov, 2004;
Fukui, Y., T. Horiguchi, 2000) and the references cited therein, for recent developments of the theory and the
applications. 

A first attempts to construct a quantum analogue of classical Markov fields has been done in (Accardi,
L., F. Fidaleo, 2003; Accardi, L., F. Fidaleo, 2003; Accardi, L., V. Liebscher, 1999; Fidaleo, F., F.
Mukhamedov, 2004). These papers extend to fields the notion of quantum Markov state introduced in (Accardi,
L., A. Frigerio, 1983) as a sub–class of the quantum Markov chains introduced in (Accardi, L., 1975).
Typically a system is identified to a point in a graph: if this graph is not isomorphic to an interval in 
(1–dimensional case). The crucial role of the localization is at the root of the difficulties to construct nontrivial
examples of Markov fields. Gaussian states (quasi-free, in the physics terminology) also have a simple
structure, but they do not describe physically interesting interactions. Note that in mentioned papers quantum
Markov fields were considered over multidimensional integer lattice. This lattice has so called amenability
condition. Therefore, it is natural to investigate quantum Markov fields over non-amenable lattices. One of the
simplest non-amenable lattices is a Cayley tree. First attempts to investigate Quantum Makov chains over such
trees was done in (Affleck, L., 1988), such studies were related to investigate thermodynamic limit of valence-
bond-solid models on a Cayley tree (Fannes, M., 1992). The mentioned considerations naturally suggest the
study of the following problem: the extension to fields the notion of generalized Markov chain. In the present
paper using the construction of Quantum Markov Chains (QMC) defined on the Cayley tree of order two
which is given in (Accardi, L.,) we obtain a nonlinear dynamical system related to Ising model. Our main goal
is to study an asymptotical behavior of the obtained nonlinear dynamical system. To do this, we find all fixed
point of the dynamical system and show an absence of periodic points. After this, we investigate the stability
of the fixed points. 

Fixed and Periodic Points of the Dynamical System:
Using the methods of (Accardi, L.,) we reduce the investigation of the quantum Markov chain asso ciated
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with the Ising model on the Cayley tree of order two to the following dynamical system                2 2f R R  
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helps to study asymptotical behavior of the dynamical  system (1).  One can  see that  the domain D of the

function                is                       g R R   2 2[0 ) ( )    

One can easily show the following property of the function                 g D R   

Proposition 1: 

Let                 be a function given by (2). Then the following assertions hold true: g D R  
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2

1 ( 3)( 1)
( ) 1 ;

2
Fix g t

  


               
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Let us study an asymptotical behavior of the function               .g D R  

Proposition 2: 

Let               be a function given by (2) and          Then the following assertions hold true:g D R   3. 
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C If               then the trajectory                  starting from the point      converges to the fixed point0 ( )t t t    ( )
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Sketch of the Proof: 
Let  us  consider  the  case  when                Since  the  function       is  strictly  increasing  and0 ( ).t t t   g
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is monotone decreasing and it converges to fixed point which is equal to one. 

Let us  consider  the  case  when                       Without  loss  any  generality,  we assume that   2
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    (see Proposition 1). This completes the proof. t

Analogously, one can prove the following proposition.
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Proposition 3:
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By means Proposition 1, one can easily prove the following property of the dynamical system              2 2f R R  
given by (1).

Theorem 1:

Let                  be a dynamical system   be given by (1). Then the following assertions hold true: 2 2f R R  
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Stability of Fixed Points:
Let us study an asymptotical behavior of the dynamical system                 given by (1).2 2f R R  
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C If   an  initial  point          satisfies  the  following condition                     then  the  trajectory 0 0x y    
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According to Proposition 2, the sequence           converges to the fixed point        
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According to Proposition 2, the  sequence            is finite. Therefore, the sequence                   
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By means Proposition 3, analogously, one can prove the following result. 
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