

FUZZY-BASED PATH ANALYSIS

Imran Moez Khan
1
, Yusof Zaw Zaw

1
, Othman O. Khalifa

1
 and Weng Kin Lai

2

1
Department of Electrical and Computer Engineering,

Faculty of Engineering, International Islamic University Malaysia,

53100 Kuala Lumpur, Malaysia

2
Centre for Multimodal Signal Processing, MIMOS Berhad

Technology Park Malaysia,

57000 Kuala Lumpur, Malaysia

ASTRACT

Video surveillance can be a very powerful tool in the fight

against crime, by accurately monitoring human activities.

Nevertheless, most surveillance systems today provide

only a passive form of site monitoring. Extensive video

records may be kept to help find the instigator of criminal

activities after the crime has been committed but

preventive measures usually require human involvement.

In addition to this, there is a need for large amounts of

data storage to keep up to several terabytes of video

streams that may be needed for later analysis. In order to

achieve any form of real-time monitoring, guards often

need to be employed to watch video feeds for hours on

end to recognize suspicious, dangerous or potentially

harmful situations. In a multi-camera scene monitoring

system, this can be quite infeasible as there can be up to

20 to 50 cameras on average in a large building complex

such as an airport or shopping malls. Intelligent video

surveillance aims to reduce or even eliminate the need for

human supervision of video feeds, and continuous

recording. Having such a system will provide numerous

other facilities and services to operators and emergency

teams, by conducting behavioral analysis on incoming

video feeds and detecting unusual or suspicious behavior.

Behavioral analysis itself can be applied to numerous

features extracted from video sequences including path

detection and classification of which several methods are

reviewed here. In this paper, we investigated a fuzzy

inference engine approach to identify the human

trajectories based on the paths that had been modeled by a

self-learning system.

Keywords: Intelligent video analysis, path detection,

video content analytics, behavioral analysis.

1. INTRODUCTION

Many surveillance systems today provide only a passive

form of site monitoring. Extensive video records may be

kept to help find the instigator of criminal activities after

the crime has been committed but preventive measures

require human involvement. In addition, there is a need for

large amounts of data storage to keep up to several large

volumes of video streams that may be needed for later

analysis. However, monitoring and storage space are not

the only concerns. Even if these costs can be borne, there

is the additional problem of reviewing this vast amount of

video data AFTER an incident has occurred.

The goal of this work is to investigate one aspect of an

intelligent video surveillance system that can help the

relevant authorities speed up response times by having

automatic, real-time alert mechanisms in place when

suspicious behavior is detected. Behavioral analysis itself

can be applied to numerous features extracted from video

sequences including path detection and other aspects of

human behaviour. Up till now, path classification has

been carried out mainly using Boolean logic and allows

only the identification of unusual paths, and not the extent

to which they are deviant from usual paths. This paper

reports on the results to solve this problem with a fuzzy

inference approach to classify paths into different

categories. The motivation for this comes from the fact

that numerous fuzzy classification and clustering

algorithms have already been used and proved to be

efficient in several image processing and feature

classification at various levels of abstraction in the image

ranging from pixel-level to feature-level [1] [2]. Fuzzy-

based inference has been proven to be advantageous in

providing a ‘human’ judgment due to its ability to handle

less rigid rules as well as the overlapping classification

sets.

2. PREVIOUS WORK

Boyd et al [3] used an approach from computer network

modeling (called network tomography) to study the flow

of blobs in an image. They split the original image (figure

1a) up into several smaller cells (figure 1b) and recorded

the number of entry and exits from once cell into all its

adjacent cells. In this way they were able to produce a

traffic intensity network model of the scene and identify

possible areas in the region which served as sources and

sinks for object trajectories. Coupled with the accumulated

Workshop on Advances in Intelligent Computing 2009

1

statistics, this effectively generated a map of the region

shown in figure 1(c):

(a)

(b)

(c)

Figure 1 : Network tomography to study trajectories

Although this is quite an effective technique used in

path analysis, it offers poor path extraction for video

surveillance. Firstly, there is no real ‘path’ which is

constructed. There is simply a mean count of flow between

adjacent cells. This does not give a mathematically

descriptive view of the average paths. Secondly, the

extracted information, though useful in determining mean

behavior, does not facilitate any comparison of a new

trajectory with old ones, i.e. it will not serve any function

for path behavioral analysis.

Johnson and Hogg [4] approached the problem of path

extraction by suggesting a vector quantization approach

where they lay down a number of formalisms which are

useful for mathematical analysis of path extraction. They

are among the first to lay down the proper notation and

theoretical basis for several aspects of the problem,

including a clear definition of trajectory (1) and flow (2):

() () () () ()(){ }.,,,,........,,,, 1122332,211 nnnnnni yxyxyxyxyxyxT −−−−= (1)

()yxyxf δδ ,,,= (2)

In order to quantize the vectors, Johnson and Hogg used

two neural networks which are competitively engaged in

unsupervised learning. Each node of the neural network

corresponds to one randomly placed possible ‘prototype’

vector in the feature space. An object feature vector was

then input into the network, and the node with the closest

prototype was chosen based on the Euclidean distance.

The chosen prototype was then updated by summing the

original prototype as well as the difference between the

input vector and the prototype multiplied by a ‘learning

factor’. If a prototype is not the closest one to an incoming

trajectory then it is not updated (3):

() () () () ()[]tmtxttmtm ccc −+=+ α1 (3a)

() ()tmtm ii =+1 for ci ≠ (3b)

However, Johnson and Hogg’s approach suffers from

the same drawback of Boyd et al’s method: there is no

mathematical representation of the path which can be used

for comparison of new trajectory data. As such, there is

limited applicability of this type of trajectory modeling in

a behavioral analysis system. Zahn et al [5] also calculate

a probability density function (PDF) of frequently used

paths in a crowded scene. However, this is done without

the use of a tracker. Their novel approach involves

distinguishing background and foreground objects in the

scene. An occurrence PDF which represents the density of

foreground objects in different segments of the scene is

calculated; and an orientation PDF which represents the

flow of objects from one cell in the scene to another is

also derived. By combining these two functions, they are

able to segment the scene into regions of high occurrence

and flow likelihood that are represented by spline

interpolation. Makris and Ellis [6] use a spatial technique

of modeling frequently used paths. They clearly describe

a spatial method of defining paths as types of trajectories

themselves with nodes, path boundaries, and node

weights. Makris defined the distance measure used when

comparing a trajectory with a path in order to measure the

similarity between them. They do not use a simple

Euclidean distance measure, because each path also has a

route envelope which must be considered. The distance

between the left and right closest boundary is also

considered in the defined distance measure. Makris et al’s

work is important in its abstraction and definition of a

path. Their representation of paths is suitable for

comparison with new trajectories to determine anomalies,

although they themselves ‘have not yet considered how

that model will be used to identify typical motions[6].

Currently, their model only takes into account the spatial

layout of the path. Nevertheless a main drawback of their

method is the arbitrarily defined distance measure.

Euclidean metrics have been avoided as the model is not

one single straight line, but rather a central path line with

boundaries on either side of it.

Workshop on Advances in Intelligent Computing 2009

2

3. SYSTEM OVERVIEW

Intelligent video surveillance for path analysis comprises

of a number of key components as illustrated in figure 2.

Figure 2 : Data flow for path analysis

The first task is to accurately track the object(s) of

interest. Once we have the trajectories, we may then

identify the paths. As the main focus of this work is to

analyse the paths, pre-processing of the video data was

done with the open source tracker SwisTrack [7]. It was

developed by the Distributed Intelligent Systems and

Algorithms Laboratory (DISAL) and the LPM Vision

Group at EPFL, Lausanne, Switzerland and uses Intel's

OpenCV library for fast image processing. Simple manual

tracking was then done on the pre-processed results.

Path extraction or path detection refers to the grouping

of similar object trajectories in video sequences and

creating a path during the training phase. A set of similar

trajectories are grouped together to form a path, bounded

by some predefined tolerance level, to make up the path

envelope. Such a model, attributed to Makris and Ellis [5]

is illustrated in figure 3. The work here uses the spine of

the path envelope as a reference for the normal path.

Figure 3 :Path Model

Intuitively, a path will represent an average of a set of

similar trajectories. The extracted paths for each location

would be stored in the database during the path extraction

phase. These would then be used by the path classifier to

evaluate all new trajectories during the testing phase. The

overall path classification system is shown in figure 4.

Figure 4 Path classification

The fuzzy inference engine developed would take two

key inputs, as shown in figure 5. The first is the commonly

used paths that are found in the scene which represents

‘typical’ or normal behavior. The other is any new object

trajectories that the tracker extracts from a video

sequence. The trajectory is then compared to the extracted

paths on a multi-dimensional feature space. The set of

features used are discussed in the next section.

Figure 5 : Fuzzy classifier

4. RESULTS & DISCUSSION

The paths are modeled as a set of multidimensional

features, viz.

a) RMS_Error : Measures the error between the

true path and the current (new)

path.

b) Distance_Diff : The difference in the total length

of the whole path.

c) Speed_Diff : The difference in the average

speeds of the two trajectories.

d) Count_Diff : The absolute difference in the

number of discrete samples.

Each feature would have a range of values that would

represent ‘identical’ to ‘completely different’. These

would then be passed through a set of fuzzy membership

functions to get membership values corresponding to

LOW, MEDIUM or HIGH, after which it would be finally

passed through the set of IF-THEN rules. Some of these

rules are shown in table 1.

Workshop on Advances in Intelligent Computing 2009

3

1 If RMS_error is LOW and distance_diff is LOW and

speed_diff is LOW and count_diff is LOW then very

usual

2 If RMS_error is LOW and distance_diff is LOW and

speed_diff is LOW and count_diff is MEDIUM then

very usual

3 If RMS_error is LOW and distance_diff is LOW and

speed_diff is MEDIUM and count_diff is LOW then

very usual

4 If RMS_error is LOW and distance_diff is LOW and

speed_diff is MEDIUM and count_diff is MEDIUM

then very usual

5 If RMS_error is LOW and distance_diff is MED and

speed_diff is LOW and count_diff is LOW then usual

6 If RMS_error is LOW and distance_diff is MED and

speed_diff is LOW and count_diff is MEDIUM then

usual

7 If RMS_error is LOW and distance_diff is MED and

speed_diff is MEDIUM and count_diff is LOW then

usual

8 If RMS_error is LOW and distance_diff is MED and

speed_diff is MEDIUM and count_diff is MEDIUM

then usual

 … … …

 … … …

 … … …

 … … …

30 If RMS_error is HIGH then very suspicious

31 If RMS_error is HIGH and distance_diff is HIGH

then very suspicious

32 If RMS_error is HIGH OR distance_diff is HIGH and

speed_diff is HIGH then very suspicious

Table 1: The Fuzzy IF-THEN rules

The fuzzy inference engine passes them through these 32

rules where each of the rules would generate a response.

The system would then defuzzify the firing strengths for

all the responses, corresponding to ‘Very Usual’, ‘Usual’,

‘Usual or Suspicious’, ‘Suspicious’ and ‘Very

Suspicious’ to obtain the crisp output which would be a

single value that ranges from 0 to a maximum of 100.

Defuzzification of the responses is done with the Centroid

method, which basically returns the centre of the mass for

the shape of the output curve. The output membership

function corresponding to each of these 5 responses is

shown in figure 6.

Figure 6: Fuzzy membership functions

The final step involves thresholding the crisp output to

produce an alert for abnormal behavior if this is less than

50. Extracted paths from 18 different scenarios based on

two locations were collected and analysed. Figure 7

shows these two locations and the extracted normal paths.

 (a) Location #1 (b) Location #2

Figure 7 : Extracted normal paths for 2 locations

Abnormal paths were also collected. Figure 8 shows two

examples of the new paths which were tested against the

normal paths.

(a) Variation of normal path

(b) Highly abnormal path

Figure 8: Test Data

Finally, figure 9 shows the screenshot of the path analysis

system with the fuzzy-based path classifier.

Workshop on Advances in Intelligent Computing 2009

4

Figure 9: System output

Moreover, a Boolean logic system and a neural network

(MLP) were also tested to compare the performance. The

neural network used here consists of 1 hidden layer with 6

neurons and trained with the standard back propagation

algorithm, with 30 examples in 1,000 epochs. 39 human

subjects were asked to validate whether each path is

suspicious/abnormal for the extracted paths in each of

these 18 different scenarios. Their responses were then

compared with those obtained from the three system, viz.

Fuzzy, Boolean and Neural approaches. The Boolean

approach computes the linear weighted sum of the feature

set.

Output = (α1DistanceDiff1 + α2SpeedDiff + α3CountDiff

+ α4RMS) / 100

where α1, α2, α3, α4 are weighted coefficients.

These coefficients are then tuned by supervised learning.

The following table summarizes the results.

 Fuzzy

logic

Boolean

logic

Neural

Network

Humans

validation

12 9 11

Accuracy 68% 50% 61%

Table 2 : Results verified by humans

5. CONCLUSIONS

This paper has shown the practicality of using a fuzzy-

based path classification to analyse the trajectory data

extracted from image sequences. The fuzzy system tends

to be ‘pessimistic’ in its inaccuracy – i.e. finding more

paths suspicious, rather than failing to detect suspicious

paths. One approach to solve this is to alter the

membership functions to increase tolerance levels – if the

goal is to get the system to agree with the human’s

analysis. Nevertheless, we believe that such a fuzzy-based

path classification system can provide additional inputs to

strengthen the security of the location that is under

surveillance. Adding a degree of intelligence to these

video surveillance systems does minimize some of the

difficulty attributed to data overload when one has too

many scenes to monitor, by automatically alerting the

operator of certain events.

Higher-level classification categories can also be built

using a fuzzy approach and the basic metrics used here.

Output classes for high, medium and low degrees of

tailing, loitering, etc can also be used for classification. As

the current work is limited to a single camera and scene,

the next logical step of this piece of investigation is to

extend the model to cater for paths that may extend over

two cameras.

6. REFERENCES

1. S. Sinha, F. Karray, P. Fieguth “Underground Pipe

Cracks Classification Using Image Analysis and

Neuro-Fuzzy Algorithm”. Proceedings of the IEEE

International Symposium on Intelligent Control and

Intelligent Systems and Semiotics. Cambridge, MA

September 15-17, 1999.

2. I. Nedeljkovic “Image Classification Based On

Fuzzy Logic. XXth ISPRS Congress, International

Society for Photogrammetry and Remote Sensing,

12-23 July 2004 Istanbul, Turkey, Commission 6.

3. J. E. Boyd, J. Meloche, and Y. Vardi, “Statistical

Tracking in Video Traffic Surveillance”, in Proc.

ICCV99, Corfu Greece, Sept. 1999.

4. N. Johnson and D. Hogg, “Learning the

Distribution of Object Trajectories for Event

Recognition”, in Proc. BMVC95, Birmingham,

England, 1995.

5. B. Zahn, P Remagnino and S.A. Velastin, “Mining

Paths of Complex Crowd Scenes”. In Lecture Notes

in Computer Science, vol. 3804, pp 126-133 (G

Bebis et al, eds.), Springer-Verlag, Berlin, 2005

6. D. Makris and T. Ellis, "Path Detection in Video

Surveillance", Image and Vision Computing

Journal, vol. 20/12, pp 895-903, October 2002

7. T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J.

Jacot, and A. Martinoli, “SwisTrack - A Flexible

Open Source Tracking Software for Multi-Agent

Systems”, Proceedings of the IEEE/RSJ 2008

International Conference on Intelligent Robots and

Systems (IROS 2008), pages 4004-4010, 2008.

Workshop on Advances in Intelligent Computing 2009

5

