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ASTRACT 

Video surveillance can be a very powerful tool in the fight 

against crime, by accurately monitoring human activities. 

Nevertheless, most surveillance systems today provide 

only a passive form of site monitoring. Extensive video 

records may be kept to help find the instigator of criminal 

activities after the crime has been committed but 

preventive measures usually require human involvement. 

In addition to this, there is a need for large amounts of 

data storage to keep up to several terabytes of video 

streams that may be needed for later analysis. In order to 

achieve any form of real-time monitoring, guards often 

need to be employed to watch video feeds for hours on 

end to recognize suspicious, dangerous or potentially 

harmful situations. In a multi-camera scene monitoring 

system, this can be quite infeasible as there can be up to 

20 to 50 cameras on average in a large building complex 

such as an airport or shopping malls. Intelligent video 

surveillance aims to reduce or even eliminate the need for 

human supervision of video feeds, and continuous 

recording. Having such a system will provide numerous 

other facilities and services to operators and emergency 

teams, by conducting behavioral analysis on incoming 

video feeds and detecting unusual or suspicious behavior. 

Behavioral analysis itself can be applied to numerous 

features extracted from video sequences including path 

detection and classification of which several methods are 

reviewed here. In this paper, we investigated a fuzzy 

inference engine approach to identify the human 

trajectories based on the paths that had been modeled by a 

self-learning system. 
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1. INTRODUCTION 

Many surveillance systems today provide only a passive 

form of site monitoring.   Extensive video records may be 

 

kept to help find the instigator of criminal activities after 

the crime has been committed but preventive measures 

require human involvement. In addition, there is a need for 

large amounts of data storage to keep up to several large 

volumes of video streams that may be needed for later 

analysis.  However, monitoring and storage space are not 

the only concerns.  Even if these costs can be borne, there 

is the additional problem of reviewing this vast amount of 

video data AFTER an incident has occurred.  

The goal of this work is to investigate one aspect of an 

intelligent video surveillance system that can help the 

relevant authorities speed up response times by having 

automatic, real-time alert mechanisms in place when 

suspicious behavior is detected.  Behavioral analysis itself 

can be applied to numerous features extracted from video 

sequences including path detection and other aspects of 

human behaviour.  Up till now, path classification has 

been carried out mainly using Boolean logic and allows 

only the identification of unusual paths, and not the extent 

to which they are deviant from usual paths. This paper 

reports on the results to solve this problem with a fuzzy 

inference approach to classify paths into different 

categories. The motivation for this comes from the fact 

that numerous fuzzy classification and clustering 

algorithms have already been used and proved to be 

efficient in several image processing and feature 

classification at various levels of abstraction in the image 

ranging from pixel-level to feature-level [1] [2].  Fuzzy-

based inference has been proven to be advantageous in 

providing a ‘human’ judgment due to its ability to handle 

less rigid rules as well as the overlapping classification 

sets.  

2. PREVIOUS WORK 

Boyd et al [3] used an approach from computer network 

modeling (called network tomography) to study the flow 

of blobs in an image. They split the original image (figure 

1a) up into several smaller cells (figure 1b) and recorded 

the number of entry and exits from once cell into all its 

adjacent cells. In this way they were able to produce a 

traffic intensity network model of the scene and identify 

possible areas in the region which served as sources and 

sinks for object trajectories. Coupled with the accumulated 
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statistics, this effectively generated a map of the region 

shown in figure 1(c): 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 1 : Network tomography to study trajectories  

Although this is quite an effective technique used in 

path analysis, it offers poor path extraction for video 

surveillance. Firstly, there is no real ‘path’ which is 

constructed. There is simply a mean count of flow between 

adjacent cells. This does not give a mathematically 

descriptive view of the average paths. Secondly, the 

extracted information, though useful in determining mean 

behavior, does not facilitate any comparison of a new 

trajectory with old ones, i.e. it will not serve any function 

for path behavioral analysis. 

Johnson and Hogg [4] approached the problem of path 

extraction by suggesting a vector quantization approach 

where they lay down a number of formalisms which are 

useful for mathematical analysis of path extraction. They 

are among the first to lay down the proper notation and 

theoretical basis for several aspects of the problem, 

including a clear definition of trajectory (1) and flow (2): 

 

( ) ( ) ( ) ( ) ( )( ){ }.,,,,........,,,, 1122332,211 nnnnnni yxyxyxyxyxyxT −−−−=  (1) 

( )yxyxf δδ ,,,=  (2) 

In order to quantize the vectors, Johnson and Hogg used 

two neural networks which are competitively engaged in 

unsupervised learning. Each node of the neural network 

corresponds to one randomly placed possible ‘prototype’ 

vector in the feature space. An object feature vector was 

then input into the network, and the node with the closest 

prototype was chosen based on the Euclidean distance. 

The chosen prototype was then updated by summing the 

original prototype as well as the difference between the 

input vector and the prototype multiplied by a ‘learning 

factor’. If a prototype is not the closest one to an incoming 

trajectory then it is not updated (3): 

( ) ( ) ( ) ( ) ( )[ ]tmtxttmtm ccc −+=+ α1  (3a) 

( ) ( )tmtm ii =+1   for ci ≠  (3b) 

However, Johnson and Hogg’s approach suffers from 

the same drawback of Boyd et al’s method: there is no 

mathematical representation of the path which can be used 

for comparison of new trajectory data. As such, there is 

limited applicability of this type of trajectory modeling in 

a behavioral analysis system.  Zahn et al [5] also calculate 

a probability density function (PDF) of frequently used 

paths in a crowded scene. However, this is done without 

the use of a tracker. Their novel approach involves 

distinguishing background and foreground objects in the 

scene. An occurrence PDF which represents the density of 

foreground objects in different segments of the scene is 

calculated; and an orientation PDF which represents the 

flow of objects from one cell in the scene to another is 

also derived. By combining these two functions, they are 

able to segment the scene into regions of high occurrence 

and flow likelihood that are represented by spline 

interpolation.  Makris and Ellis [6] use a spatial technique 

of modeling frequently used paths.  They clearly describe 

a spatial method of defining paths as types of trajectories 

themselves with nodes, path boundaries, and node 

weights.  Makris defined the distance measure used when 

comparing a trajectory with a path in order to measure the 

similarity between them. They do not use a simple 

Euclidean distance measure, because each path also has a 

route envelope which must be considered. The distance 

between the left and right closest boundary is also 

considered in the defined distance measure.  Makris et al’s 

work is important in its abstraction and definition of a 

path.  Their representation of paths is suitable for 

comparison with new trajectories to determine anomalies, 

although they themselves ‘have not yet considered how 

that model will be used to identify typical motions[6].  

Currently, their model only takes into account the spatial 

layout of the path.  Nevertheless a main drawback of their 

method is the arbitrarily defined distance measure. 

Euclidean metrics have been avoided as the model is not 

one single straight line, but rather a central path line with 

boundaries on either side of it. 
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3. SYSTEM OVERVIEW 

Intelligent video surveillance for path analysis comprises 

of a number of key components as illustrated in figure 2. 

 

Figure 2 : Data flow for path analysis 

The first task is to accurately track the object(s) of 

interest.  Once we have the trajectories, we may then 

identify the paths.  As the main focus of this work is to 

analyse the paths, pre-processing of the video data was 

done with the open source tracker SwisTrack [7].  It was 

developed by the Distributed Intelligent Systems and 

Algorithms Laboratory (DISAL) and the LPM Vision 

Group at EPFL, Lausanne, Switzerland and uses Intel's 

OpenCV library for fast image processing.  Simple manual 

tracking was then done on the pre-processed results. 

Path extraction or path detection refers to the grouping 

of similar object trajectories in video sequences and 

creating a path during the training phase. A set of similar 

trajectories are grouped together to form a path, bounded 

by some predefined tolerance level, to make up the path 

envelope.  Such a model, attributed to Makris and Ellis [5] 

is illustrated in figure 3. The work here uses the spine of 

the path envelope as a reference for the normal path. 

 

Figure 3 :Path Model 

Intuitively, a path will represent an average of a set of 

similar trajectories.  The extracted paths for each location 

would be stored in the database during the path extraction 

phase.  These would then be used by the path classifier to 

evaluate all new trajectories during the testing phase.  The 

overall path classification system is shown in figure 4. 

 

Figure 4 Path classification 

The fuzzy inference engine developed would take two 

key inputs, as shown in figure 5. The first is the commonly 

used paths that are found in the scene which represents 

‘typical’ or normal behavior. The other is any new object 

trajectories that the tracker extracts from a video 

sequence. The trajectory is then compared to the extracted 

paths on a multi-dimensional feature space. The set of 

features used are discussed in the next section. 

 

Figure 5 : Fuzzy classifier 

4. RESULTS & DISCUSSION 

The paths are modeled as a set of multidimensional 

features, viz. 

a) RMS_Error :  Measures the error between the 

true path and the current (new) 

path. 

b) Distance_Diff :  The difference in the total length 

of the whole path. 

c) Speed_Diff :  The difference in the average 

speeds of the two trajectories. 

d) Count_Diff :  The absolute difference in the 

number of discrete samples. 

Each feature would have a range of values that would 

represent ‘identical’ to ‘completely different’.  These 

would then be passed through a set of fuzzy membership 

functions to get membership values corresponding to 

LOW, MEDIUM or HIGH, after which it would be finally 

passed through the set of IF-THEN rules.   Some of these 

rules are shown in table 1. 
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1 If RMS_error is LOW and distance_diff is LOW and 

speed_diff is LOW and count_diff is LOW then very 

usual 

2 If RMS_error is LOW and distance_diff is LOW and 

speed_diff is LOW and count_diff is MEDIUM then 

very usual 

3 If RMS_error is LOW and distance_diff is LOW and 

speed_diff is MEDIUM  and count_diff is LOW then 

very usual 

4 If RMS_error is LOW and distance_diff is LOW and 

speed_diff is MEDIUM and count_diff is MEDIUM 

then very usual 

5 If RMS_error is LOW and distance_diff is MED and 

speed_diff is LOW and count_diff is LOW then usual 

6 If RMS_error is LOW and distance_diff is MED and 

speed_diff is LOW and count_diff is MEDIUM then 

usual 

7 If RMS_error is LOW and distance_diff is MED and 

speed_diff is MEDIUM  and count_diff is LOW then 

usual 

8 If RMS_error is LOW and distance_diff is MED and 

speed_diff is MEDIUM and count_diff is MEDIUM 

then usual 

 …  …  … 

 …  …  … 

 …  …  … 

 …  …  … 

30 If RMS_error is HIGH then very suspicious 

31 If RMS_error is HIGH and distance_diff is HIGH 

then very suspicious 

32 If RMS_error is HIGH OR distance_diff is HIGH and 

speed_diff is HIGH then very suspicious 

Table 1: The Fuzzy IF-THEN rules 

The fuzzy inference engine passes them through these 32 

rules where each of the rules would generate a response.  

The system would then defuzzify the firing strengths for 

all the responses, corresponding to ‘Very Usual’, ‘Usual’, 

‘Usual or Suspicious’, ‘Suspicious’ and ‘Very 

Suspicious’ to obtain the crisp output which would be a 

single value that ranges from 0 to a maximum of 100. 

Defuzzification of the responses is done with the Centroid 

method, which basically returns the centre of the mass for 

the shape of the output curve.  The output membership 

function corresponding to each of these 5 responses is 

shown in figure 6. 

 

Figure 6: Fuzzy membership functions 

The final step involves thresholding the crisp output to 

produce an alert for abnormal behavior if this is less than 

50.  Extracted paths from 18 different scenarios based on 

two locations were collected and analysed.  Figure 7 

shows these two locations and the extracted normal paths.  

    
 (a) Location #1  (b) Location #2 

Figure 7 : Extracted normal paths for 2 locations 

Abnormal paths were also collected.  Figure 8 shows two 

examples of the new paths which were tested against the 

normal paths.  

 
(a) Variation of normal path 

 

 
(b) Highly abnormal path 

Figure 8: Test Data 

Finally, figure 9 shows the screenshot of the path analysis 

system with the fuzzy-based path classifier.  
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Figure 9: System output 

Moreover, a Boolean logic system and a neural network 

(MLP) were also tested to compare the performance.  The 

neural network used here consists of 1 hidden layer with 6 

neurons and trained with the standard back propagation 

algorithm, with 30 examples in 1,000 epochs.  39 human 

subjects were asked to validate whether each path is 

suspicious/abnormal for the extracted paths in each of 

these 18 different scenarios.  Their responses were then 

compared with those obtained from the three system, viz. 

Fuzzy, Boolean and Neural approaches.  The Boolean 

approach computes the linear weighted sum of the feature 

set. 

 

Output = (α1DistanceDiff1 + α2SpeedDiff + α3CountDiff 

+ α4RMS) / 100 

where α1, α2, α3, α4 are weighted coefficients.   

These coefficients are then tuned by supervised learning.  

The following table summarizes the results. 

 

 Fuzzy 

logic 

Boolean 

logic 

Neural 

Network 

Humans 

validation 

12 9 11 

Accuracy 68% 50% 61% 

Table 2 : Results verified by humans 

5. CONCLUSIONS 

This paper has shown the practicality of using a fuzzy-

based path classification to analyse the trajectory data 

extracted from image sequences.  The fuzzy system tends 

to be ‘pessimistic’ in its inaccuracy – i.e. finding more 

paths suspicious, rather than failing to detect suspicious 

paths.  One approach to solve this is to alter the 

membership functions to increase tolerance levels – if the 

goal is to get the system to agree with the human’s 

analysis.  Nevertheless, we believe that such a fuzzy-based 

path classification system can provide additional inputs to 

strengthen the security of the location that is under 

surveillance.  Adding a degree of intelligence to these 

video surveillance systems does minimize some of the 

difficulty attributed to data overload when one has too 

many scenes to monitor, by automatically alerting the 

operator of certain events.  

Higher-level classification categories can also be built 

using a fuzzy approach and the basic metrics used here. 

Output classes for high, medium and low degrees of 

tailing, loitering, etc can also be used for classification. As 

the current work is limited to a single camera and scene, 

the next logical step of this piece of investigation is to 

extend the model to cater for paths that may extend over 

two cameras. 
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