

Abstract— The need of security to protect the data through
networks has become of vital importance and critical for many
sensor network applications. There are several security schemes
implemented using hardware or software trying to solve the
problem of security in WSN by taking into consideration the
limitations of sensors (bandwidth and energy), the majority of
them are symmetric key encryption schemes and some others
are asymmetric encryption schemes is not recommended to be
used because of high time complexity and consumption demand.
In this study we compare the time complexity and power
consumption between software and hardware implementation
using RSA algorithm. Our simulation shows that usage of
hardware security could improve time efficiency and decrease
the power consumption, so the strong cryptography can be
implemented in WSNs security.

Index Terms—AES, assymetric encryption, DES, FPGA, key
management, symetric encryption.

I. INTRODUCTION

ECENT advances in electronics and wireless
communication technologies have enabled the

development of large-scale wireless sensor networks that
consist of many low-power, low-cost, and small-size sensor
nodes. Sensor networks hold the promise of facilitating large-
scale and real-time data processing in complex environments. It
has emerged as a new monitoring and control solution for
various ubiquitous applications [1]. The need of security to
protect the data through networks has become of vital
importance and critical for many sensor network applications,
such as military target tracking and security monitoring. This
area of research has become quite active in the recent years.

Encryption is mainly used to ensure secrecy of data. It can
also be used to secure authentication, certainty about the
identity of the sender, and integrity, certainty about the
unimpaired ness of data. This is especially important if
electronic data-flow is to have legal consequences. Encryption
algorithms have received wide attention and study. Encryption
algorithms can be classified into two groups: asymmetric
encryption algorithms (with public key algorithms) such as
Data Encryption Standards (DES) and symmetric encryption
algorithms (with private Key algorithms). Most encryption
algorithms are implemented at software implementations.

Among software and hardware implementations for WSN
security selecting suitable implementation is critical issue due
to the constraints on WSNs. The problem in WSNs security is
that the public key cryptography algorithm is not
recommended to be used because of high time complexity and
consumption demand.

Through this study, we compare between software and
hardware implementation in terms of time complexity and
power consumption and proposed to be used in WSNs by
using public key cryptography algorithm, such as RSA
algorithm.

The advantages of software implementations are ease of
use, ease of upgrading, portability and flexibility. However a
hardware implementation has more physical security by
nature, as it can not easily be modified by an attacker [2]. To
provide security and privacy to small sensor nodes is
challenging, due to the limited capabilities of sensor nodes in
terms of computation, communication, memory/storage, and
energy supply [3].

Every hardware circuit can be characterized by two major
parameters: speed of operation, and area. Cryptographic
algorithms are intended to perform cryptographic
transformations on strings of data. Therefore the speed of
cryptographic implementations is commonly characterized by
the throughput. Throughput does not always give the full
information about the speed, and is often accompanied by
another parameter called latency [4].

The main contribution of this work is to prove that
hardware implementation for WSNs security, even using
strong cryptography, is much more effective in time and
power consumption than software solutions.

The paper is organized as follows. In Section II, related
work in WSNs security implementations discussed. In section
III, the security requirements in WSNs are described.
Hardware and software implementations for RSA algorithm
are discussed in Section IV and Section V respectively. In
Section VI, the results of comparison between hardware and
software implementations are briefly described. We conclude
this paper in Section VII.

II. RELATED WORK

Security is a very important issue when designing or
deploying any network or protocol. However the recently
developed networks as the wireless have not given the
necessary attention to security when designing protocols by

Comparison between RSA Hardware and Software
Implementation for WSNs Security Schemes

Abdullah Said Alkalbani, Teddy Mantoro, Abu Osman Md Tap
Department of Computer Science, Kulliyyah (Faculty) of Information & Communication Technology

International Islamic University Malaysia, Kuala Lumpur, Malaysia

R

Proceeding 3rd International Conference on ICT4M 2010

E-84

taking into account the specificity of these networks as the
used medium and the devices constraints [5]. Thus, many
security protocols were proposed trying to efficiently carry out
the problem of security and the constraints of wireless
networks [6]. However, in sensor network, the problem of
security is more challenging regarding the limitation of
sensors and the area where the sensors are deployed such as
battlefields [7].

WSNs have unique constraints as compared to traditional
networks making the implementation of existing security
measures not practicable. These constraints are the result of
WSNs limitations which make the design of security
procedures more complicated.

Currently, WSNs security has many challenges. One
challenge is how to improve the security of data transmission
between WSN nodes against eavesdropping, tampering and
modification of packets. The other challenge is the need of
secure and efficient key-distribution mechanism in allowing
simple key establishment for large-scale sensor networks to be
used for security protocols. Another challenge lies in the
needs to balance data integrity, confidentiality, and
availability as well as preserving constraint energy resources.

The severe constraints and demanding environments of
WSN make computer security for these systems even more
challenging. Its required to to choose the best security
implementation method software or hardware to fit the
security demands.

III. SECURITY REQUIREMENTS IN WSNS

All security mechanisms require a certain amount of
resources for the implementation such as: data memory, code
space and energy to power the sensor. These resources,
however, are very limited in a tiny wireless sensor:

a. Limited Memory and Storage Space.
b. Power Limitation.
c. Vulnerability of nodes to physical capture.
d. Lack of a-priori knowledge of post-deployment

configuration.
e. Collisions and latency.

Wireless Sensor Networks are vulnerable to many attacks
because of broadcast nature of transmission medium, resource
limitation on sensor nodes and uncontrolled environment [8].
The security requirements of wireless sensor networks are [9]:

a. Confidentiality.
b. Integrity.
c. Authentication.
Through this study, the strong cryptography algorithm,

such as RSA algorithm is proposed to be used in WSNs even
there a lot of constrains including high time complexity and
power consumption. The RSA coding algorithms are outlined
the four processes needed for RSA encryption, i.e.:

a. Creating public key
b. Creating a private (secret) key
c. Encrypting messages
d. Decoding message

In brief, the RSA algorithm is the following [16]:
To create public key Kp:

a. Select two different primes P and Q
b. Assign x = (P-1)(Q-1)
c. Choose E relative primes to x, which must satisfy a

condition for Ks.
d. Assign N = P*Q
e. Kp is N concatenated with E.

To create private key:
a. Choose D: D*E mod x = 1
b. Ks is N concatenated with D.

To encode plain text m by :
a. Assume m is a numeric
b. Calculate c=mE mod N.

To decode c back to m:
a. Calculate m = cD mod N.

IV. HARDWARE IMPLEMENTATION

Until very recently, all encryption products were in the
form of specialized hardware. These encryption/decryption
boxes plugged into a communications line and encrypted all
the data going across that line. Although software encryption
is becoming more prevalent today, hardware is still the
embodiment of choice for military and serious commercial
applications.

The NSA, for example, only authorizes encryption in
hardware. There are several reasons why this is so. The first is
speed. Encryption algorithms consist of many complicated
operations on plaintext bits. These are not the sorts of
operations that are built into your run-of-the-mill computer.
The two most common encryption algorithms, DES and RSA,
run inefficiently on general-purpose processors. While some
cryptographers have tried to make their algorithms more
suitable for software implementation, specialized hardware
will always win a speed race. Additionally, encryption is often
a computation-intensive task. Tying up the computer’s
primary processor for this is inefficient. Moving encryption to
another chip, even if that chip is just another processor, makes
the whole system faster.

The second reason is security. An encryption algorithm
running on a generalized computer has no physical protection.
Mallory can go in with various debugging tools and
surreptitiously modify the algorithm without anyone ever
realizing it. Hardware encryption devices can be securely
encapsulated to prevent this. Tamperproof boxes can prevent
someone from modifying a hardware encryption device.
Special-purpose VLSI chips can be coated with a chemical
such that any attempt to access their interior will result in the
destruction of the chip’s logic. IBM developed a
cryptographic system for encrypting data and communications
on mainframe computers. It includes tamper resistant modules
to hold keys.

The final reason for the prevalence of hardware is ease of
installation. Most encryption applications don’t involve
general-purpose computers [4]. People may wish to encrypt

Proceeding 3rd International Conference on ICT4M 2010

E-85

their telephone conversations, facsimile transmissions, or data
links. It is cheaper to put special-purpose encryption hardware
in the telephones, facsimile machines, and modems than it is
to put in a microprocessor and software. Even when the
encrypted data comes from a computer, it is better to install a
dedicated hardware encryption device than to modify the
computer’s system software. Encryption should be invisible; it
should not hamper the user. The only way to do this in
software is to write encryption deep into the operating system.
This isn’t easy. On the other hand, even a computer neophyte
can plug an encryption box between his computer and his
external modem.

The three basic kinds of encryption hardware on the
market today are: self-contained encryption modules (that
perform functions such as password verification and key
management for banks), dedicated encryption boxes for
communications links, and boards that plug into personal
computers. Some encryption boxes are designed for certain
types of communications links, such as T-1 encryption boxes
that are designed not to encrypt synchronization bits. There
are different boxes for synchronous and asynchronous
communications lines. Newer boxes tend to accept higher bit
rates and are more versatile. Even so, many of these devices
have some incompatibilities. Buyers should be aware of this
and be well-versed in their particular needs, lest they find
themselves the owners of encryption equipment unable to
perform the task at hand. Pay attention to restrictions in
hardware type, operating system, applications software,
network, and so forth.

PC-board encryptors usually encrypt everything written to
the hard disk and can be configured to encrypt everything sent
to the floppy disk and serial port as well. These boards are not
shielded against electromagnetic radiation or physical
interference, since there would be no benefit in protecting the
boards if the computer remained unaffected. More companies
are starting to put encryption hardware into their
communications equipment. Secure telephones, facsimile
machines, and modems are all available. Internal key
management for these devices is generally secure, although
there are as many different schemes as there are equipment
vendors. Some schemes are more suited for one situation than
another, and buyers should know what kind of key
management is incorporated into the encryption box and what
they are expected to provide.

Security of WSNs can be improved by using cryptographic
hardware through the following:

• Sensor nodes can be improved by an add-on secure
microcontroller with secure memory and hardware
crypto engine supporting AES and 3DES encryption
standards. The encryption engine increases encrypted
communication speed up several Mbps. Unfortunately,
current crypto-accelerators suitable for sensor networks
have no support for public key cryptography.

• Sensor node can be extended with an FPGA module
implementing fast symmetric and asymmetric

cryptographic algorithms. This solution offers high-
speed encryption and key generation at highest price and
power consumption (depends on FPGA module).

• Smart cards, as tamper resistant devices, can be used as
crypto accelerators and also as a secure storage for
cryptographic keys. These crypto-accelerators ordinarily
support symmetric and asymmetric cryptography
together with low power consumption [10].

Fig. 1. Schematic diagram of the WSNs hardware security system.

In general the security implementation process could be

represented as a communication from sending-end to
receiving-end as shown in Figure 1. In WSNs it can be seen
that a Sender node stores a Plain Message to be sent to
Receiver base station. The encryption processor encrypts the
Plain Message to Ciphered Message to protect the
eavesdropping before sending it off. When the Ciphered
Message arrives at receiving-end, its decryption processor
executes the decryption process to recover the Plain Message
for the Receiver base station.
 An important benefit of using hardware implementation is
tamper-resistant hardware. It is a concept of hardware that is
resistant against physical attacks. Secure hardware is equipped
by microprocessor and secures memory, which contains
sensitive data and algorithms for processing these data [11].
The data never leave the secure memory and cannot be
modified by another code. Such secure hardware cannot be
cloned or emulated, because these features cannot be replaced
just by software without special hardware support. Most
widely used kind of tamper-resistant device is smart card.

V. SOFTWARE IMPLEMENTATION

Any encryption algorithm can be implemented in software.
The disadvantages are in speed, cost, and ease of modification
(or manipulation). The advantages are in flexibility and
portability, ease of use, and ease of upgrade. The algorithms
can be inexpensively copied and installed on many machines.
They can be incorporated into larger applications, such as
communications programs or word processors. Software
encryption programs are popular and are available for all
major operating systems. These are meant to protect
individual files; the user generally has to manually encrypt
and decrypt specific files. It is important that the key
management scheme be secure: The keys should not be stored

Proceeding 3rd International Conference on ICT4M 2010

E-86

on disk anywhere (or even written to a place in memory from
where the processor swaps out to disk). Keys and unencrypted
files should be erased after encryption. Many programs are
sloppy in this regard, and a user has to choose carefully.

Fig. 2. system consisting of multiple modules with throughput parameters

There are many factors effects on the software

implementation. The most important factors are throughput,
bandwidth and latency.

Throughput is defined as the number of bits processed in a
unit of time after the process has gone through any
initialization, and is usually expressed in Mbps or Gbps.

Throughput = Number of processed bits / Time unit – Startup

Typically, the encryption and decryption throughputs are
equal. All symmetric-key algorithms perform a fixed sequence
of transformations. In other words, no conditional operations
are performed. Therefore, the time of encryption of one block
of data is usually fixed and known, unless implementation
uses some tricks which can vary the time of encryption. From
the point of view of cryptographers, using any techniques
yielding correlation between data and time of encryption is
highly undesirable. Such a correlation leaks information about
data, and can be used to mount timing attacks on the
implementation.

In security, bandwidth is defined as the number of cipher
blocks encrypted or decrypted per second. The unit of
bandwidth is 1/s. The equation of throughput can described as

Throughput = block size * Bandwidth

 Throughput has a very important meaning when
considering a bigger system consisting of multiple modules
processing data in sequence, as shown in Figure 2 below,
because it is limited to the maximum throughput of the
slowest of the modules. Cryptographic transformations usually
require the most processing power, and present a bottleneck in
many applications [4].

The third important factor in software implementation is
latency. It is defined as the time required to complete
processing one block of data, and is usually expressed in
number of cycles. This is the time between a moment when a
block of data enters the encryption unit, and a moment when it
leaves it. The unit of latency is ns (nanosecond). The
encryption latency and throughput are related by
simultaneously/latency).

The total latency of a system is a sum of latencies of all
modules processing data sequentially. Therefore, all modules,
no matter how different from each other, contribute to the
overall latency.

VI. RESULTS AND DISCUSSION

Cryptographic algorithms are utilized for security services
in various environments in which low cost and low power
consumption are key requirements. Wireless Local Area
Networks (WLAN), Wireless Personal Area Networks
(WPAN), Wireless Sensor Networks (WSN), are examples of
such technologies. A solution to reduce power and memory
costs, as well as greatly increasing speed of algorithm, is to
use a hardware implementation of a cipher [13]. Compared to
software, significantly higher performance and lower power
consumption can be achieved with dedicated hardware.

In this work we focused on public key cryptography,
mainly in RSA cryptosystem, as secure but also very
computational complex algorithm. Previous works showed
that RSA is not suitable for WSN because of high time
complexity and consumption demands [12]. Our simulation
showed that usage of hardware could improve not only time
efficiency and security but also decrease power consumption
of sensor nodes in case of using strong cryptography.

TABLE 1
Comparison of time complexity and power consumption using software and

hardware implementation for rsa algorithm

Power
(mWs)

Time(s) Key
length

Implementation

726.99 22.03 1024 RSA software
5506.05 166.85 2048 RSA software

27.15 0.75 1024 RSA hardware
79.09 1.89 2048 RSA hardware

Evaluations of security architectures are usually based on
analytical modeling and performance evaluations are usually
based on simulation models.

Finally we compared power consumption and time
complexity hardware and software implementation of RSA.
We prove that hardware platforms are much more effective in
time and power consumption than software solutions as shown
in table 1.

0

5

10

15

20

25

RSA Implementation using 1024 bits Key
 length

T
im

e(
s)RSA S/W

RSA H/W

Fig. 3. Comparison of time complexity using 1024 bits key length software and

hardware implementation for RSA algorithm.

Proceeding 3rd International Conference on ICT4M 2010

E-87

The results in Table 1 and Figures 3-6 show that time
complexity and power consumption can be reduced up to 30
times for RSA-1024. When 2048-bit keys are used, time
demands can be reduced up to 88 times and power
consumption up to 70 times if hardware implementation used.

VII. CONCLUSION

Many issues still remain to be addressed in respect to
achieving security on WSNs. Sensor nodes are not usually
tamper resistant, because of hardware limitation and cost
issues [14, 15]. Hence, attackers can get sensor nodes, extract
stored keys, and then can insert malicious code. This node
compromising is one of the main issues in wireless sensor
networks. Second, sensor nodes are limited in their energy and
computation abilities. Because of that, there exists a
fundamental necessity of obtaining more knowledge about
suitable implementation method for security schemes in factor
of performance and low power consumption.

As in the literature showed that RSA is not suitable for
WSN because of high time complexity and consumption
demand [12]. We reviewed hardware and software
architectures proposed WSNs security implementations by
presented the comparison between hardware and software
implementations public key cryptography algorithm, such as
RSA algorithm. Our simulation showed that usage of
hardware could improve not only time efficiency and security
but also decrease power consumption of sensor nodes in case
of using strong cryptography.

This also proves that hardware architecture for security of
WSNs is more efficient than software implementation in terms
of time complexity, throughput and power consumed during
the security process.

This will allow us to identify further security mechanisms
that can be successfully employed on WSNs, and also gain
more knowledge towards the definition of a complete security
architecture for WSNs.

REFERENCES
[1] S. M. Hwang, and E. N. Huh. "An Efficient Topology Control and

Dynamic Interval Scheduling Scheme for 6LoWPAN", in Gervasi et al.
(Eds.): ICCSA, Part I, LNCS 5592, pp. 841–852. 2009

[2] A. AlKalbany, M. Saeb, and H. A. AlHassan. "FPGA Implementation of
the Pyramids Block Cipher", System on Chip Conference (SOCC2005),
Washington, US.2005

[3] J. Albath, and S. Madria. "Practical Algorithm for Data Security (PADS)
in Wireless Sensor Networks". MobiDE’07, , Beijing, China.2007

[4] K. Gaj, and P. Chodowiec. "Comparison of the hardware performance of
the AES candidates using reconfigurable hardware", Proc. 3 rd
Advanced Encryption Standard (AES) Candidate Conference, New
York.2000

[5] R. Ramanathan, and J. Redi. "A Brief Overview of Ad Hoc Networks:
Challenges and Directions", IEEE Communication Magazine, vol. 40,
no. 5, pp. 20-22.2002.

[6] B. Kadri, A. Mhamed, and M. Feham "Secured Clustering Algorithm
For Mobile Ad Hoc Networks", International Journal of Computer
Science and Network Security, Vol.7, No.3, pp 27-34.2007.

[7] A. Perrig, J. Stankovic, and D. Wagner, "Security In Wireless Sensor
Networks", Communications of the ACM, vol. 47, no. 6, pp. 53--57.
2004.

[8] L. Zhijun, and G. Guang, "Security In Wireless Sensor Networks",
University of Waterloo, CACR 2008-20.

0

1000

2000

3000

4000

5000

6000

RSA Implementation using 2048 bits key length

P
o

w
er

 (
m

W
s)

RSA S/W

RSA H/W

Fig. 6. Comparison of power consumption using 2048 bits key length software

and hardware implementation for RSA algorithm.

0

100

200

300

400

500

600

700

800

RSA Implementation using1024 bits key length

P
o

w
er

 (
m

W
s)

RSA S/W

RSA H/W

Fig. 5. Comparison of power consumption using 1024 bits key length software

and hardware implementation for RSA algorithm.

0

20

40

60

80

100

120

140

160

180

RSA Implementation using 2048 bits key length

T
im

e(
s)RSA S/W

RSA H/W

Fig. 4. Comparison of time complexity using 2048 bits key length software

and hardware implementation for RSA algorithm.

Proceeding 3rd International Conference on ICT4M 2010

E-88

[9] A. Perrig,, J. Stankovic, and D. Wagner, "Security In Wireless Sensor
Networks", ACM,Vol. 47, No. 653.2004.

[10] P. Pecho, J. Nagy, and P. Hanacek, "Power Consumption Of Hardware
Cryptography Platform For Wireless Sensor", International Conference
on Parallel and Distributed Computing, Applications and Technologies,
2009.

[11] J. P. Anderson. "Computer Security Technology Planning Study", ESD-
TR-73-51, vol. I. ESD/AFSC, Hanscom AFB, Bedford, Mass.,
(NTIS AD-758 206), 1972.

[12] F. Amin, A. H. Jahangir, H. Rasifard, "Analysis Of Publickey
Cryptography For Wireless Sensor Networks Security", In Proceedings
of World Academy of Science, Engineering and Technology,
ISSN 1307-6884 , 2008.

[13] M .Healy, T. Newe, and E. Lewis. "Analysis Of Hardware Encryption
Versus Software Encryption On Wireless Sensor Network Motes".,
Springer-Verlag Berlin Heidelberg 2008.

[14] A. Perrig, R. Szewczyk, V.Wen, D. E. Culler, and J. D. "Tygar, Spins:
security protocols for sensor networks", MOBICOM, pp. 189–199,
2001.

[15] S. Setia, and S. Jajodia. "Leap: Efficient Security Mechanisms For
Large-Scale Distributed Sensor Networks", CCS ’03: Proceedings of the
10th ACM conference on Computer and communications security (New
York, NY, USA), ACM Press, pp. 62–72, 2003.

[16] H. Anderson. Introduction to Computer Security, Prentice Hall, 2004,
pp: 85-86.

Proceeding 3rd International Conference on ICT4M 2010

E-89

