ABSTRACTS OF

INTERNATIONAL CONFERENCE ON NATURAL PRODUCTS 2010

From Nature to Medicine through Sustainable Education, R & D and Practice

10–12 December 2010

Bayview Beach Resort,
Pulau Pinang,
Malaysia

Editors

Mohd. Zaini Asmawi
Ab Fatah Ab Rahman
Nizam Mordi
Farha Naomi Omar Farouk
Roziahanim Mahmud
Saringat Hj Baie
Chan Kit Lam
Zhari Ismail
Nur Hafzan Md Hanafiah
Tengku Nor Maheran Tengku Ab. Kadir
formula \(C_{35}H_{65}N_{5}O_{10} \). All the analytical data supported the proposed structures of the compounds. Both compounds showed weak in vitro cytotoxicity activity when tested against breast cancer, liver cancer and colon cancer cell lines. However, good activity was observed against fungus, and both Gram positive and Gram negative bacteria.

Conclusion: This is the first report of natural occurrence of novel cyclic polyamides from a plant source. Both compounds exhibited antibacterial and antifungal activities.

BIOACTIVE COMPOUNDS FROM STEM BARK OF ENTADA SPIRALIS RIDL

AIZA HARUN\(^1\), SITI ZAITON MAT SO’AD\(^2\), NORAZIAN MOHD HASSAN\(^2\), WAN KHAIMA AZIRA WAN MAT KHALIR\(^1\) AND NENI KARTINI CHE MOHD RAMLI\(^1\)

\(^1\)Faculty of Applied Sciences, Universiti Teknologi MARA, Pahang, Malaysia
\(^2\)Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia

Introduction: *Entada spiralis* Ridl. (Leguminoceae) which is locally known as *beluru* or *sintok* is a liana or woody climber that grows wildly in Malaysia. The isolation and characterisation of the major chemical constituents from the bioactive extract of the stem bark of *E. spiralis* has been carried out. Our previous study revealed that the methanol extract was active against dermatophytes that causes skin infections. Strains of dermatophytes, *Trichophyton mentagrophytes* ATCC 9533, *Trichophyton tonsurans* ATCC 28942 and *Microsporum gypseum* ATCC 24102 were used.

Objectives: This study was to elucidate the structure of active constituents from the active fraction of methanol extract from the stem bark of *E. spiralis*.

Materials and Methods: The extract was further fractionated with different solvent gradient and repeated test on the dermatophytes were done. The structure elucidation of this compound was based on spectroscopic data (\(^1\)H and \(^{13}\)C NMR, HMQC, HMBC and DEPT135).

Results: The most active fraction of the methanol extract was chloroform: methanol [6:4 (v/v)]. From this fraction, a white crystalline solid was isolated and its structure was proposed as a new triterpene derivative.

Conclusion: The current study provided important baseline information for the use of *E. spiralis* as well as its constituent for the treatment of skin infections associated with the studied microorganisms.