International Journal on Perceptive and Cognitive Computing (IJPCC)

https://doi.org/10.31436/ijpcc.v12i1.680

Vol 12, Issue 1 (2026)

Anomaly Detection of Denial-of-Service Network Traffic
Attacks using Autoencoders and Isolation Forest

Muhammad Thagif bin Ghulam Hussain, Aman Shafeeq Lone, Nur-Adib Maspo¥*, Zainab Senan Mahmod Attar

Bashi

Department of Computer Science, Kulliyyah of ICT, International Islamic University Malaysia Selangor, Malaysia

*Corresponding author nuradibmaspo(@iium.edu.my
(Received: 9" December 2025; Accepted: 2™ January 2026; Published on-line: 30t January 2026)

Abstract—This paper presents an unsupervised network-based anomaly detection framework that
integrates deep autoencoders with the Isolation Forest algorithm. The framework analyzes extracted traffic
features, including packet length and IP address patterns, to detect deviations from normal behaviour
without requiring labelled data. Autoencoders reconstruct benign traffic to highlight subtle deviations, while
Isolation Forest efficiently assigns anomaly scores to identify statistical outliers in large-scale, unlabelled
datasets. Experimental evaluation shows that the Isolation Forest model achieves a low mean squared error
(MSE) of 0.0065 with an accuracy of 9.79%, indicating stable anomaly score separation, whereas the
standalone autoencoder records a substantially higher reconstruction error (MSE = 3.92 x 10™) and an
accuracy of 6.09%, reflecting the difficulty of modelling complex and highly variable network traffic patterns.
By combining both approaches, the proposed framework improves overall detection performance,
achieving a higher accuracy of 13.55%, and demonstrates enhanced capability in detecting both volumetric
and stealthy attacks, such as application-layer denial-of-service (DoS) traffic. Visualization of traffic
behaviour further supports the analysis, revealing clearer separation between normal and anomalous flows
when both models are integrated. These findings highlight the complementary strengths of statistical outlier
detection and deep learning-based reconstruction, providing a practical foundation for adaptive and real-
time anomaly monitoring in dynamic network environments.
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I. INTRODUCTION labelled data.

Among unsupervised methods,

Modern networks tend to face complicated network
attacks such as Slowloris, IHulk, GoldenEye and so on. Each
of these are simple DoS attacks that will contest the traffic.
Slowloris as an example, is a “slow and low” HTTP based
DoS that holds many different server connections open with
minimal bandwidth [1]. This is because Slowloris traffic is
wide and appears specifically benign, so volume-based
Distributed Denial of Service (DDoS) detectors often fail at
detecting the attack [1]

Machine Learning (ML) based anomaly detection has
recently emerged to identify these types of hidden attacks
by modeling normal traffic patterns [2][3]. Unsupervised
methods are especially superior in this case, as they require
no label attack data and can detect novel threats [3][4]. Two
common approaches to this are neural-autoencoder models
and tree-based isolation methods. Autoencoders (AE) learn
compact representations of normal traffic and flag flows
with large reconstruction error as anomalous [5][6]. The
isolation Forest (IF) isolates outliers [2].

Recent advances in machine learning enable modeling of
normal behavior and detection of deviations without

autoencoders (AE) and Isolation Forest (IF) are prominent:
AEs reconstruct benign traffic to expose subtle anomalies,
while IF efficiently isolates gross outliers via random
partitioning. This work aims to investigate a hybrid
framework that integrates AE and IF to leverage their
complementary strengths.

Il. RELATED WORK

Recent studies highlight the importance of how deep
learning has expanded into anomaly detection and
expanded the capabilities in cybersecurity itself, mainly with
autoencoders that will adapt to high-dimensional network
features [10][12]. The application of feature selection before
autoencoding further improves the precision and
robustness in network-based intrusion detection systems
(IDS) [13]- Comparative studies across loT (Internet of
Things) network anomaly detection methods consistently
confirm the reliability of combining tree-based models like
Isolation Forest with deep models [14]. The integration of
clustering techniques with Isolation Forest, such as the X-
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means enhancement, has demonstrated success inisolating
complex attacks in multi-feature datasets [15].

Table 1 highlights previous studies that have explored the
application of various forms of autoencoders for anomaly
detection in high-dimensional data and system logs.
Chalapathy and Chawla[16] proposed an unsupervised deep
learning framework using autoencoders to detect outliers in
high-dimensional datasets while An and Cho [17] employed
variational autoencoders to model normal system behavior
and identify anomalies based on reconstruction
probabilities. Kim et al. [18] utilized stacked autoencoders by
integrating network flow statistics to enhance anomaly
detection capabilities. Additionally, Khan and Mailewa [19]
compared deep autoencoders with PCA and t-SNE in

analyzing high-dimensional network features,
demonstrating the superior performance of deep
autoencoders in anomaly prediction tasks. Table 1
summarizes the related methodologies, and their

corresponding applications employed in anomaly detection.
The comparison highlights the techniques used and their
effectiveness in detecting deviations.

TABLEI

SUMMARY OF RELATED WORKS ON AUTOENCODER AND ISOLATION FOREST-BASED

ANOMALY DETECTION
Method(s) Application/Contribution
Used
R. Autoencoder
Chalapatyh
and S.
Chawla
[16]
J.An&S.
Cho[17]

Author(s)

Proposed an
unsupervised deep
learning framework to
find outliers in high
dimensional data.

Used Variation
autoencoders to detect
anomalies in system logs
by learning normal
behavior and identifying
flows with abnormally
high reconstruction
probability.

Integrated network flow
stats with stacked
autoencoder for
detecting intrusions.
Showcased
autoencoders ability to
flag abnormal traffic
patterns.

Compared deep
autoencoders and PCA in
high dimensional
network features. It
showed better
performance in anomaly
predictions.

Variational
Autoencoder

Stacked
Autoencoder,
Network
Flow

G. Kim, S.
LEe, and S.
Kim [18]

B. Mailewa
etal.[19]

Deep
Autoencoder,
PCA, t-SNE
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H. Song et | Autoencoder | Architectures/latent

al. [20] (study) sizefthresholds on NSL-
KDD, loTID20, N-BaloT.

K. Adversarial Competitive F1 with

Shiomoto | AE <0.1% labels (semi-

etal.[21] supervised).

Across prior studies, deep learning models effectively
capture the nonlinear structure of network traffic, while
Isolation Forests provide computationally efficient isolation
of anomalous patterns at scale. However, relatively few
works integrate these complementary approaches within a
unified detection pipeline. This gap motivates our hybrid
framework, which combines deep reconstruction-based
learning with statistical isolation to enhance robustness and
interpretability in unsupervised settings. In particular, the
study by Sharma and Grover [22] demonstrates the
effectiveness of both Autoencoders and Isolation Forests
for cybersecurity anomaly detection, reporting improved
detection performance and faster response compared to
traditional methods, with Isolation Forest achieving an 85%
detection rate within a 2-second response time.

Building on these findings, this study proposes a hybrid
anomaly detection model that integrates deep
autoencoders and Isolation Forest, leveraging their
complementary strengths the autoencoder’s ability to learn
deep data representations and the Isolation Forest’s

efficiency in isolating outliers.

[1l. METHODOLOGY
This experiment is structured in multiple phases:

1. Environment setup: The setup of a virtualized
network by using Proxmox and Kali linux across 2
physical machines to simulate both normal and
abnormal traffic

2. Data generation and collection: Generation of
traffic through scripted normal interactions and
attack patterns.

3. Data processing and modeling: Implementation of
both machine and deep learning pipeline for data
preprocessing, unsupervised learning, anomaly
detection, and performance evaluation.

Further elaboration of environmental set up as the main
source of data collection are discussed as follows;

A. Data Collection

IV. To construct a representative dataset of attack and
normal traffic, we established a secure, isolated testing
environment via the Proxmox virtualization. There were
two PCs provided by the university, which were bridged
together with a TP-Link TL-SG1016DE managed switch,
having SSH-based communication between them. Both
PCs had a Kali Linux virtual machine (VM) installed in
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them, and all attacks were launched from PC1 to PCa.
Figure 1 illustrated the experimental testbed for data
collection.

SWITCH SET N A SAFE ENVIRONMENT FOR TESTING

ATTACKING PC.

Fig. 1. Setting up of network topology for experimental testbed for
dataset collection.

Three types of DoS attack GoldenEye, Slowloris, and iHulk
on their command-line scripts. Goldenkye and Slowloris
were continuously executed for 3-5 minutes each for each
capture, whereas iHulk was executed for less than one
minute due to its intense traffic load that tended to crash
the test machine.

All network activity was monitored by Wireshark on PCa.
Packet capture (.pcap) files were converted into CSV format
through the export tool of Wireshark. No additional filtering
or cleaning was done. All attacks were captured in two
sessions separately, resulting in six CSV files: slowloris1 (~51
MB), slowloris2 (~98 MB), goldeneye1(~93 MB), goldeneye2
(=132 MB), ihulk1 (~946 MB), and ihulk2 (~1 GB).

Every row in the CSV files is equal to one packet with the
following attributes: Packet Number, Timestamp (relative,
minutes), Source IP, Destination IP, Protocol, and Length.
The "Info" column was not included for analysis. The shape
of normal data count is (1458, 7) and the shape of anomaly
data count (1270198, 7).

A. Autoencoder

We implemented a stack feedforward autoencoder
neural network. The autoencoder’s encoder, compresses
input feature vectors into a low-dimensional latent space,
and then the decoder will reconstruct the input. After
training, each flow’s reconstruction error is used as an
anomaly score [5] using mean squared error as the below
equation (1).

L(x%) = IIx — &I ()

Where Lis loss function, x is the original input, and %X is the
reconstructed output.
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An anomaly threshold T is set at the 95th percentile of
validation reconstruction errors. Hyperparameters: hidden
layers [32,16,8], latent dimension 2, ReLU activations, Adam
optimizer, 50 epochs, batch size 128.

Autoencoders are known to learn the normal data
distribution, causing anomalous flows to have larger
reconstruction errors [3]. This observation aligns with
comparative analyses of autoencoder and Isolation Forest
models in network anomaly detection [7]. Feature selection
can then enhance this by reducing the noise and
dimensionality before the training [13].

Latent
Space

Encoder

Decoder

Input Data

Encoded Data

Reconstructed Data

Fig. 2 Autoencoder

Figure 2 highlights how the architecture of the
autoencoder is used for anomaly detection. The encoder
compresses high dimensional input into a much smaller
representation, which is then reconstructed by the decoder.
Anomalies are then detected when the reconstruction error
exceeds a certain threshold, indicating that the input
deviates from the learned normal patterns.

B. Isolation Forest

The Isolation Forest was applied to the same feature set
in an unsupervised manner. The Isolation Forest has random
partitioning trees, and at each node, it selects a random
feature that will be splitting the value to divide the data.
Points that reside in a small, isolated subspace are deemed
as anomalous [4]. Extended versions of Isolation Forest
have demonstrated efficacy in detecting anomalies in high-
dimensional network traffic data [9]. The model can be
Isolation Forest isolates samples via random partitioning;
anomalies have shorter expected path lengths. The anomaly
score is presented in the following equation 2.

S (%, n) = 2"(-E(h(x))/c(n)) (2)
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Where E(h(x)) is the expected path length, and c(n) is the
average path length in a binary tree.

We use 100 trees, subsample size 256, contamination 0.05
enhanced by combining it with unsupervised clustering such
as X-means to better isolate the anomalies [15].

&
P
N
PR LY

/\

Outliers are
easier to isolate

Inliers are harder
toisolate

Fig. 3. Isolation Forest

Figure 3 highlights how the Isolation Forest algorithm
isolates anomalies. Outliers appear in sparse regions of the
data space, so they are isolated early in fewer splits, making
them much easier to detect. Normal data points reside in
dense regions and require more splits to isolate.

C. Combined Approach:

We also experimented with a hybrid pipeline. First by
using the autoencoder to compress the data, then feeding
those representations into an Isolation Forest [6].

The proposed pipeline first encodes traffic via the
autoencoder to obtain a latent representation, then applies
Isolation Forest to score anomalies. This combines nonlinear
feature learning with efficient statistical isolation, targeting
both subtle and gross deviations.

V. RESULTS AND DISCUSSION

This section presents the results obtained from the IHulk
attack experiment

Fig. 4. IHulk attack example from wireshark
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Comparison of iHulk attack traffic in figure 4 and normal
traffic illustrated in figure 5. The iHulk capture shows
repetitive UDP floods with fixed packet lengths and
unidirectional bursts, while normal traffic exhibits
structured TCP handshakes and HTTP communication.

Fig. 5. Normal networking

Facket Langth Dver Time with Anomalies

=

) s ) s e
Tim i

Fig. 6. Packet length over time with anomalies

Figure 6 shows a time-series graph of packet lengths that
is in bytes, over a 3.5 minute period. The x-axis shows the
time in minutes, while the y-axis shows the length of each
packet sent. The blue bars represent the actual packet
lengths, and the red dots mark the data points detected as
anomalies using Isolation Forest model (anomaly score_if).

Two clear attack periods are visible in the plot. and they
happened around the 0.3 to 0.6 minute mark and again from
2.2 to 2.7 minutes. During these times, there is a sudden and
consistent increase in packet size, with many packets
ranging between 4,000 and 7,400 bytes. Some even go
above 15,000 bytes. This behavior is typical of the iHulk DoS
attack, as it floods the network with repeated large HTTP
requests to overload the system.

The red anomaly points are mostly clustered during these
high-traffic periods. Isolation Forest works by isolating
unusual data points in the dataset. Since these large packet
sizes are very different from the normal traffic, the model
assigns them as high anomaly scores (anomaly score _if).
This explains that the model is indeed effective in detecting
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abnormal traffic patterns during the attacks. Outside the
attack window, As can be seen between 0.6 and 2.2 minutes,
and after 2.6 minutes, the packet sizes are much smaller and
more varied, ranging from only 40 to 2,000 bytes. This
represents normal traffic. In these parts, only a few
anomalies are detected, which means the model does not
raise many false alarms under normal conditions.

The flat and repeated layers of packet sizes that can be
seen during the attack times also reflects the artificial nature
of the iHulk attack. The attack tool sends repeated requests
with similar sizes, creating visible horizontal lines in the plot.
When properly observed, this is different from the natural,
more random traffic patterns.

In summary, Figure 6 shows that the Isolation Forest
model (anomaly score _if) is effective at identifying sudden
changes in packet length caused by DoS attacks. While
packet length alone may not detect every type of attack, it
works well in this case, especially against attacks like iHulk
that rely on repeated, large packet flows.

T Scurce iy During Ancmalies

Fig. 7. Top sources IPs

Figure 7 shows the top source IP addresses responsible
for the network anomalies, ranked by the frequency of
suspicious activity. The IPv4 address 192.168.10.101 is the
leading source, generating over 33,000 anomalous events,
followed by 192.168.10.51 with about 22,000 anomalous
events. These two IPs are the primary contributors to the
detected anomalies.

Several IPv6 addresses also appear, many sharing a
common prefix (fe80::be24:11ff), suggesting they belong to
devices within the same local network segment. Their
frequencies range from around 8,000 to 15,000, indicating
notable but lower activity compared to the top IPv4 sources.

The distribution suggests a mix of dominant external
attacks and multiple internal or localized sources, possibly
compromised devices or part of a coordinated attack.
Identifying these key IPs is essential for focusing security
efforts on mitigating the most impactful threats.

Figure 8 shows the feature correlation heatmap, which
reveals significant positive correlations among key traffic
features such as “packets_per sec”, “unique_sources”, and
“burst_rate”, with coefficients of 0.94, 0.93, and 0.74
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respectively. These strong associations indicate that high
packet rates and increased source diversity are
characteristics of DoS attack behavior.

Fasters Comalation Heatmap

gt ames [T m I

Fig. 8. Heatmap

The Autoencoder-based anomaly score
(anomaly score ae) demonstrates strong  positive
correlations between these features, most notably with
“unique_sources” (0.96) and “burst rate” (0.90)
suggesting that the model effectively captures the
underlying structure of attack traffic. In contrast, the
Isolation Forest anomaly score (anomaly score if) shows
moderate correlation with “burst_rate” (0.39) and weaker
associations with other traffic features, indicating a differing
detection mechanism that may rely less on direct traffic
volume indicators. The length feature displays negligible or
negative correlations across the board, including a mild
inverse relationship with “anomaly score if” (-0.13),
implying limited utility for distinguishing anomalous
behavior in this dataset.

TABLEII
MODEL PERFORMANCE METRICS.
Model MSE Accuracy
Isolation Forest 0.0065 9.79%
Autoencoder 39220288057.1852 6.09%
Combined Model - 13.55%

Table 2 presents the model performance metrics, results
highlight the effectiveness of each individual model as well
as the improvement achieved through their integration. The
Isolation Forest achieved a mean squared error (MSE) of
0.0065 with an accuracy of 9.79%, demonstrating its
capability to isolate anomalies efficiently through tree-
based partitioning. The Autoencoder, while producing a
substantially higher reconstruction error (MSE = 3.92 x 10%),
attained an accuracy of 6.09%, reflecting its ability to capture
nonlinear feature representations for anomaly detection.
When the outputs of both models were combined, the
overall detection accuracy increased to 13.55%, indicating a
complementary effect. This improvement suggests that the
hybrid approach successfully leverages the statistical
isolation strength of the Isolation Forest and the deep
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feature learning capacity of the Autoencoder to enhance
anomaly detection performance in complex network traffic.

Isstanion Forest Anomaly Scers Distrbution Errar

075 -070 -085 050 055 -050 -045 048 - 1 H 3 r} 5
ancmaly_score i1 anamuly_scane._se 1ed

Fig. 9. Anomaly score distributions from Isolation Forest (left) and
Autoencoder (right). The histograms illustrate the frequency of anomaly
scores, highlighting the separation between normal and anomalous traffic
in both models.

Figure 9 presents the statistical distribution of anomaly
scores derived from two distinct detection algorithms,
Isolation Forest (IF) and Autoencoder (AE). These scores
provide quantitative measures for distinguishing between
normal and malicious network flows. In the case of IF (left),
scores are based on the average path length required to
isolate each data point through random partitioning.
Normal flows cluster near —0.40, indicating greater difficulty
in isolation, whereas attack flows extend toward -0.75,
reflecting their relative ease of isolation. For the AE (right),
scores correspond to reconstruction errors produced by a
neural network trained on normal traffic. Normal flows yield
low reconstruction errors (~1 x 10°), while attack flows
generate substantially higher errors (~5 x 10°), resulting in a
clear bimodal distribution.

This separation highlights the model’s ability to capture
complex traffic features and differentiate anomalies in an
unsupervised setting, consistent with trends reported in
prior studies comparing isolation-based and neural
network-based approaches [14]. The traffic analyzed in
these experiments included both benign web flows and
multiple types of denial-of-service (DoS) attacks collected
under controlled conditions. Each flow was characterized by
features such as packet length, total bytes, flow duration,
and directional packet counts. To support analysis and
visualization, packet length distributions over time were
plotted (Fig. 6), top source IP addresses were ranked to
identify attack origins (Fig. 7), and feature correlations were
examined using heatmaps (Fig. 8).

The  experimental results demonstrate that
unsupervised deep learning and tree-based models can
effectively detect diverse application-layer denial-of-service
attacks, including Slowloris, Goldenkye, and IHulk. The
autoencoder successfully modelled normal traffic patterns
and identified attack flows through elevated reconstruction
errors while the Isolation Forest isolated anomalous flows
by leveraging random partitioning without the need for
labeled data The integration of both approaches enhanced
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detection robustness, particularly in  feature-rich
environments and produced distinct score distributions that
strengthened anomaly discrimination.

The hybrid framework shed lights the importance of
combining statistical and deep learning methods for
anomaly detection. Autoencoders are particularly effective
at capturing nonlinear dependencies in high-dimensional
traffic, thereby detecting subtle deviations, whereas
Isolation Forest provides computational efficiency and rapid
identification of gross outliers in real-time scenarios. The
bimodal anomaly score distributions presented in table 2
further confirm the ability of both models to distinguish
normal and malicious traffic in an unsupervised manner, a
critical capability for practical intrusion detection systems.

In addition, visualization tools such as correlation
heatmaps, top IP rankings, and packet-length time series
plots provide valuable support for forensic analysis,
improving interpretability for network analysts. While the
detection accuracies of individual models remain modest,
the improvements observed through their combination
validate the hybrid approach.

VI. CONCLUSION

This paper presented an unsupervised network anomaly
detection framework that integrates autoencoders with
Isolation Forests to identify application-layer DoS attacks,
including Slowloris, IHulk, and Goldenkye. Trained
exclusively on normal traffic, the framework assigns
anomaly scores to unseen flows and effectively
distinguishes malicious patterns without the need for
labeled datasets. The results confirm that Isolation Forest
excels in rapidly detecting gross outliers, while
autoencoders provide robust feature learning and
reconstruction-based detection of subtle anomalies. When
combined, the two methods achieve higher overall
accuracy, demonstrating that hybrid models can
complement each other’s limitations and deliver more
robust and reliable intrusion detection. Future work will
focus on improving the model accuracy by fine-turning
model and model optimization, once the model meet the
optimum accuracy then deploying this hybrid framework in
live network environments to further enhance
responsiveness, precision, and adaptability against evolving

attack vectors.
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