International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v12i1.678

Vol 12, Issue 1 (2026)

A Hybrid Overlay Architecture for Social Feature Integration

in Browser-Based Cloud Gaming
Ahmad Nur Zafran Shah bin Ahmad Shahrizal, Danish Haikal bin Mohammad, Zainab S. Attarbashi*, Amal

Abdulwahab Hasan Alamrami, Nur-Adib Maspo

Department of Computer Science, International Islamic University Malaysia,

*Corresponding author zainab_senan@iium.edu.my
(Received: 9" December 2025; Accepted: 2™ January 2026; Published on-line: 30 January 2026)

Abstract— Current cloud gaming platforms force a trade-off between streaming performance and
integrated social features, typically requiring resource-intensive dedicated clients. This paper presents an
architecture that eliminates this compromise through a Hybrid Overlay engine. Built with vanilla
TypeScript/HTML5 and decoupled from the WebRTC video pipeline, the engine renders social overlays (chat,
friend lists) directly onto the game canvas, avoiding DOM overhead. A Rust/Actix-web backend ensures low-
latency streaming. The system was validated through comprehensive testing. Performance and security
tests confirmed: automatic streamer binary compilation, successful WebRTC stream initiation, automated
SSL generation, and strict HTTPS enforcement. Functional tests demonstrated robust authentication
(registration, session persistence), real-time message synchronization (<200ms), and correct social
workflows. Crucially, the input sandbox isolated chat keystrokes from the game stream, and Firebase RBAC
rules blocked all unauthorized data writes. By unifying high-fidelity streaming with lightweight, native social
integration, this work provides a performant, zero-install platform that makes social cloud gaming accessible

on low-end devices, establishing a new model for architecting these services.

Keywords— Cloud Gaming, WebRTC(, Low-Latency Streaming, TypeScript, Performance Optimization.

[. INTRODUCTION

The gaming industry has evolved into a dominant
segment of the technology landscape, motivated by
advancements in internet infrastructure. This evolution has
given rise to cloud-based gaming platforms, which enable
users to stream games remotely from high-performance
servers, thereby offloading intensive computational tasks
such as physics processing and graphical rendering [1]. As
cloud gaming technology has matured offering improved
accessibility and performance, its market is projected to
exceed $21.4 billion by 2028 [2]. Yet, despite its potential,
mainstream cloud gaming has yet to fully realize its promise
as a unified social experience. Current platforms frequently
lack deeply integrated social functionalities, rely on
resource-heavy dedicated applications, and often employ
subscription models or hardware constraints. These
shortcomings fragment the user experience, forcing players
to depend on third-party applications for communication
and coordination, which introduces complexity and
overhead particularly on low-end devices. Figure 1 shows an
online cloud gaming structure as described by [3].

The social dimension of gaming is not peripheral; it is
central. A 2023 global survey indicated that 46% of gamers
play weekly to connect with friends [4], underscoring the

role of games as platforms for community and collaboration.
For such experiences to be viable in the cloud, minimizing
end-to-end latency is paramount to preserve interactivity
and the sense of shared presence. This work therefore
addresses the need for a cdoud gaming architecture
designed from the ground up to integrate social features
natively while employing technologies suited for low-
latency delivery, all within an accessible, browser-based
interface. This paper presents the design, implementation,
and evaluation of a lightweight, browser-native cloud
gaming platform built to address this gap. The core
contribution is a Hybrid Overlay architecture that decouples
sodcial features including real-time chat, friend management,
and community hubs from the game streaming pipeline. The
frontend is implemented in vanilla TypeScript and HTMLs5,
rendering interactive overlays directly onto the video canvas
to avoid Document Object Model (DOM) overhead. The
backend uses the Rust programming language with the
Actix-web framework to manage signalling and WebRTC
peer connections, ensuring low-latency media delivery. User
state and real-time data are synchronized via Firebase Cloud
Services, providing scalable authentication and data
persistence.

137

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v12i1.678

" ONLINE GAMING

» Effects (dedicated GPU)
User actions capturing

/" CLOUD GAMING
Thin client

-

* Cloud Gaming client ¢
* Multimedia decoding .
* User actions capturing

Transp. network

&

QoS
Packet forwarding

Multimedia

User actions

/ \
)
i Traditional client A\ Internet Online gaming server |/ E
i)
: Metadata Metadata I
i (..] !
; User actions User actions axEn :
> X !
|
I
H O Application storing + QoS -'I.- i
i * Rendering * Packet forwarding * Game logic :
I
l‘ !

Multimedia

User actions

Vol 12, Issue 1 (2026)

Online gaming server v

User actions —

Cloud gaming server ‘

=

Metadata

e e e

— . —
* Application storing *» Game logic
* Rendering
+ Effects + Postprocessing
* Multimedia coding
* Communication with Private Server ’

' 1
' | Low processing resources |
L e e L T |

Fig. 1 Online and Cloud Gaming structures [3]

The remainder of this paper is organized as follows:
Section 2 reviews related work in cloud gaming
architectures and social feature integration. Section 3
details the system design and implementation, including the
Hybrid Overlay architecture and the full technology stack.
Section 4 presents the results of functional, performance,
and security testing. Finally, Section 6 concludes the paper
with a discussion of the findings, acknowledges limitations,
and suggests directions for future work.

Il. RELATED WORKS
This section reviews the architectural approaches and
limitations of existing commercial platforms, followed by an

analysis of key technical research that informs the design of
efficient, socially integrated systems.

A. Commercial Platforms and Their Limitations

Leading services such as NVIDIA GeForce NOW, Xbox Cloud
Gaming, Boosteroid, and Shadow PC demonstrate the

current state of the industry, yet each exhibits significant
trade-offs in accessibility, social integration, and cost (see
Table 1). NVIDIA GeForce NOW provides broad game library
support and basic voice chat but requires a desktop client
for optimal performance and lacks built-in community
features [5]. Xbox Cloud Gaming uses Microsoft’s
ecosystem but is restricted to a subscription model and
depends on external Xbox Live services for social interaction
[6]- Boosteroid offers browser-based access, improving
platform agnosticism, but provides no free tier or native
social capabilities. Shadow PC delivers full desktop
virtualization, offering maximum flexibility at the cost of
high pricing, a mandatory client application, and no
integrated social tools [7]. A consistent pattern across these
platforms is the reliance on third-party applications for
communication and community functions, which fragments
the user experience and introduces additional overhead,
particularly on low-end devices.

TABLEI

FEATURE COMPARISON OF MAJOR CLOUD GAMING PLATFORMS
Feature NVIDIA GeForce NOW Xbox Cloud Gaming Boosteroid Shadow PC
Primary Access Client & limited browser Client & mobile browser Web browser Desktop client
Free Tier Limited No No No
Built-in Voice Chat Yes No No No
Integrated Community Hub No Via Xbox Live No No
Social Dependency High (3rd party) High (Xbox app) High (3rd party) High (3rd party)

138

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v12i1.678

B. Technical Foundations and Research

Early research established the fundamental shift from
traditional online gaming to a cloud-based model,
highlighting the critical role of network quality and server-
side processing [8]. Studies have extensively analyzed the
impact of latency, jitter, and packet loss on Quality of
Experience (QoE), leading to adaptive streaming techniques
that adjust video parameters in response to network
conditions [9], [10]. Further research into traffic
characterization of services like OnLive has informed
protocol design and server optimization for real-time
streaming [11].

The emergence of Web Real-Time Communication
(WebRTC) has been essential for browser-based streaming.
It provides a standardized API for peer-to-peer, low-latency
media delivery directly within browsers, eliminating the
need for plugins [12]. Projects like moonlight-web-stream
demonstrate a practical bridge between high-performance
streaming hosts (e.g., Sunshine) and web clients using a
Rust-based WebRTC pipeline, proving the viability of a
browser-native approach [13]. Concurrently, research into
real-time communication via JavaScript has addressed
synchronization challenges critical for implementing
responsive social features like chat and notifications in a
browser context.

C. Identified Gap and Contribution of this Work

Despite these advances, a significant gap remains:
commercial platforms prioritize streaming performance but
treat social features as an external, fragmented layer, while
technical research often optimizes streaming protocols or
social features in isolation. Current models that rely on

?

User Opens Browser

v

Authenticated?

¢No

Login via Firebase

Y
v

View Dashboard

v

Yes

’% User Action Exﬁ

Open Community Hub

v

Send Message / Add Friend

Connect to Rust Server

Vol 12, Issue 1 (2026)

separate DOM composition for social overlays or external
applications incur inherent latency and resource overheads
that are poorly quantified. This work directly addresses this
gap by proposing and evaluating the Hybrid Overlay
architecture. This architecture is designed to enable a
principled comparison by co-rendering social interfaces
directly onto the video stream and centralizing input
management, with the explicit goal of minimizing the
overhead that current decoupled approaches introduce.

I1l. PROPOSED SYSTEM DESIGN

This section details the architecture, development
methodology, and core specifications of the proposed cloud
gaming platform including the system's three primary
modules: the frontend streaming client, the backend
signalling server, and the integrated social layer.

A. Development Requirements

System requirements were derived from an analysis of
existing platforms and core objectives. Functional
requirements include secure user authentication (via
Firebase), low-latency game streaming using WebRT(, a
real-time community hub with chat and friend management,
and robust session handshake handling. Non-functional
requirements include minimal client resource consumption;
scalable Firestore database performance, compatibility with
modern WebRTC-supported browsers, and comprehensive
security via HTTPS/WSS, DTLS/SRTP, and Firebase Role-
Based Access Control (RBAC) rules.

B. System Architecture

The platform's logical flow and component interactions
are modelled in Figure 2 (System Flowchart).

—> Launch Host Process

¥

Streaming Session
(Video/Audio/input)

Y’

Stop Stream?

LNO

Streaming..

Yes

Select Game

v

Close WebSocket

Q Nf Handshake & Auth Success? 125
Show Error Modal
O

(

Fig.2 System Flowchart

139

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v12i1.678

A user authenticates via Firebase before accessing the
main dashboard. From there, they may enter the Community
Hub for social interaction or initiate a game stream. To start
a stream, the client establishes a WebSocket connection to
the Rust signalling server, which authorizes the session and
orchestrates a WebRTC handshake with the remote Game
Host. Upon successful negotiation, a peer-to-peer media
channel is established for video/audio streaming and input
relay.

The Rust server spawns a dedicated Streamer child
process, which configures the Game Host's capture
hardware. The server then mediates the exchange of
Session Description Protocol (SDP) offers and answers
between the Streamer Process and the Web Client, followed
by Interactive Connectivity Establishment (ICE) candidate
exchange to establish a direct UDP data channel.

D. Data Model

The system employs a NoSQL data model implemented
in Firebase Firestore, structured to support real-time social
features and session management (see Entity Relationship
Diagram, Figure 3). Core collections include: USERS
(authentication and profiles); FRIENDS and
FRIEND REQUESTS (social graph); MESSAGES and GROUPS
(communication); and SESSIONS with GAME metadata
(stream management).

USERS
_______________________ -+ ouid : string «PK»

username : string === - =

_______________ -z email : string |
| password_hash : string |
last_login ; timestamp

] I
" i
| joinst | _creates |

| i

I
1S |
i

COMMUNITY_POSTS

opost_id : string «PK»

. user_id : string «FK»
;:m;:t;ﬁ\g“ I |content : string
§ h A
members: oesll | fgff - g <
[M

FRIEND_REQUESTS

o from_uid : string «FKe
oto_uid : string «FK»

status : string

o group_id : string «PK»

|
I
I
GROUPS |
|
|
|
|

FRIENDS contauns: I

ouid : string «PK» ! joinsi N

friend_since : imestamp
= MESSAGES
SESSION

o session_id : string «PKs

omsg_id : string «PK»

I
]
1
2]
senderid : string «FK» | | Thoct ycor id : string «FKe
content: string ! | game id :string «FK»
| is_active : boolean
1
1
1
1

max_players ; int

timestamp : timestamp

icontaing FUng

] 1

1 1 o 4¥—_
GAME

o game_id : string «PK»

title : string

description : string
executable_path : string
is_multiplayer : boolean

SESSION_PARTICIPANTS

o session_id : string «FK»
ouser_id : string «FK»

role : string
join_time : timestamp

Fig. 3 System Flowchart

Vol 12, Issue 1 (2026)

A multi-layered security design protects data and
communications:

1) Transport Security: All signaling traffic (WebSocket,
HTTP) is encrypted via TLS (HTTPS/WSS).

2) Media Security: The WebRTC peer-to-peer stream is
secured using Datagram TLS (DTLS) for key exchange
and the Secure Realtime Transport Protocol (SRTP)
for audio/video encryption.

3) Data Access Control: Firebase Security Rules enforce
RBAG, isolating user data and ensuring users can only
modify their own profiles and authorized group
content.

The system architecture is modular, comprising a
signalling backend, a client-side hybrid overlay, and a real-
time social data layer (see Figure 4).

Lightjoy Hybrid Streaming (Optimized Layout)

2. Backend Services 1. Client (Browser)

1.WS/Cmd =

Firebase 1 WebRTC
Overlay Ul Input >
- g b Events Player
2 u.-uryT \
=] i
4.5pawn
Signa Process
mh —>» Manager High-Speed Video
3| Request (UOR/RTP)
nput Chnnel

3. Host System (Game PC

L | ¥
L=

IPC Bridge _“I Sunshine

S.nit
A

Inject
< ’ | Capture

Virtual

»
Input HID Game Process

Fig. 4 System Flowchart

The implementation integrates three core technological
layers: The Signalling & Streaming Layer uses the Sunshine
encoder on the host side, with orchestration managed by a
custom Rust signalling server (moonlight-server)
responsible for WebRTC session negotiation, host selection,
and spawning subprocesses to handle the raw UDP media
stream. A key innovation is the client-side Hybrid Overlay
Architecture (viewer.html, stream.ts), which renders HTML5
social interfaces directly atop a hardware-accelerated
WebGL video stream. This architecture employs precise CSS
z-index stacking to position a DOM-based "Community
Sidebar" over the video canvas and incorporates an Input
Isolation Engine that intercepts focus events; when the chat
sidebar is active, event.stopPropagation() prevents
keystrokes from being forwarded to the game host,
enabling seamless simultaneous gameplay and

140

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v12i1.678

communication. Finally, the Social Engine (Data Layer) is
powered by a custom module (comm.js) interfacing with
Firebase Firestore, enables instant messaging through
onSnapshot listeners, and handles the complete lifecycle of

friend requests including sending, acceptance, and rejection.

The backend signalling server was implemented in Rust,
utilizing the Actix-web framework and Cargo package
manager. This language was selected for its guaranteed
memory safety and high-concurrency capabilities, which are
critical for managing numerous simultaneous WebRTC
handshakes. The client frontend was built with TypeScript
and native HTML5 DOM APIs, deliberately avoiding heavier
frameworks to minimize overhead and ensure responsive
performance on low-end hardware, with development
conducted primarily in Visual Studio Code. For data
persistence and real-time synchronization, Firebase
Firestore served as the NoSQL backend database.

During integration, key technical challenges were
encountered and resolved. Overlay Input Interference,
where keyboard inputs affected both the game stream and
chat interface, was solved by implementing a client-side
Input Isolation Engine that uses event.stopPropagation() to
contain keystrokes within the focused social overlay.
Additionally, Z-Index Layering conflicts between the HTML
DOM and the WebGL video canvas were addressed by
enforcing a strict CSS stacking context, assigning the canvas
a z-index of o0 and the overlay a z-index of 10 to ensure
correct visual compositing.

Security is enforced through a multi-layered approach. All
signalling communication between the client and server is
protected by Transport Layer Security (TLS) via HTTPS and
WSS connections. The WebRTC media stream itself is
secured using Datagram TLS (DTLS) for key exchange and
the Secure Realtime Transport Protocol (SRTP) for
encrypting the audio and video payloads. Data integrity and
privacy within the social features are maintained through
Firebase's Role-Based Access Control (RBAC) with security
rules restrict database write operations, cryptographically
scoping them to the authenticated user's session ID
(request.auth.uid) to prevent unauthorized data
modification. Finally, the client-side Input Isolation Engine
functions as a critical security sandbox, ensuring that user
interactions with the social overlay cannot inadvertently
leak into the remote desktop control pipeline, thereby
mitigating a core risk in browser-based remote access
systems.

IV. SYSTEM EVALUATION

This section presents the operational outputs and
performance evaluation of the deployed platform, covering
administrative interfaces resource utilization, and the end-
user experience.

Vol 12, Issue 1 (2026)

A. Administrative Outputs

System administration is supported via a backend console
and a cloud dashboard.

» Rust Signaling Server Console:

To provide real-time diagnostics. Logs confirm server
initialization, TLS setup, successful user authentication via
Firebase, WebSocket session establishment, and the
lifecycle management of the streaming subprocess (see
Figures 5-7).

INFOD

INFD
INFD

eam|: killed streamer

Fig. 7 Streamer Process Lifecycle Console Output

+ Firebase Console:

The GUI manages non-volatile state. The Authentication
dashboard displays registered users and active sessions,
while the Firestore inspector shows the data structure for
users, groups, and messages, confirming proper data
nesting and access patterns (see Figures 8).

Fig. 8 Firestore users database

B. Testing Plan

A comprehensive test plan was executed to validate
functional requirements across all modules: Authentication,

141

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v12i1.678

Vol 12, Issue 1 (2026)

Game Streaming, Social Interaction, and Security. The 1. Delete Server Consolelogs | Pass
methodology included unit and integration testing to verify | Streamer.exe. compiles showed
component reliability and end-to-end system behavior. 2. Run web- streamer.exe | compilation
server and updates | and success.
L executable.
1. Authentication Module Tests 3. Observe config.json
This module was tested to verify secure user registration, console.
credential validation, and sTisés:E)Ir;]perﬂstence. TABLE VV
START WEBRTC STREAM
REGISTRATION WITH VALID INPUT
Test Case ID TC Auth oo1 Test Case ID TC Strm_ooz
Related Feature | Foo1(Authentication) Related Feature | Foo2 (Game Streaming)
ID ID
Objective Verify successful user registration. Objective Verify successful initiation of video stream.
Coverageltems | Reg-Auth-o1 Coverage Items | Reg-Strm-o1
Steps Expected Actual Pass/Fail Steps Expected Actual Result Pass/Fail
Result Result Result
1. Navigate to Account is Registration | Pass - -
e " .] 1. Click "Start Video overlay | Overlay Pass
Sign Up" page. created in successful; .
N . Stream" on appears; opened, video
2. Fillin form Firebase; Dashboard . L
. . host. gameplay is feed visible.
with valid User loaded. Wait T isibl
credentials. redirected to i.onnaelctic;)rn visible.
3. Click Dashboard.
'Register'. handshake.
TABLE I 3. Security Module Tv.asts
LOGIN WITH INVALID CREDENTIALS These tests confirmed the enforcement of transport
security, access control, and system integrity measures,
Test Case ID TC_Auth_ooz
Related Feature | Foo1(Authentication) TABLE VIV
D HTTPS ENFORCEMENT
Objective Verify system rejects incorrect passwords. TCID TC Sec oo1 TC Sec o002 TC Sec 003
Coverage Items Reg-Auth-o2 Feature ID | Foo3 (Security) | Foo3 (Security) (Foo3)
- Security
Steps Expected Actual Pass/Fail Objective | Verify Verify server Verify write
Result Result .
p—— : automated prevents protection on
:.'LI:a;:.g.a : g 2?’55 E‘ms E:;Z;a o Pass generation of unsecured HTTP | other user's
ein”p g ’ P y . g self-signed connections.. data.
2. Enter valid "Invalid displayed; certificates
email but credentials" Login - -
incorrect message prevented Steps 1.Remove serve | 1. Runserver 1.Authenticate
d A ’) r/certs. with SSL as User A.
paéfi\:lf 'rLc; in' d;ﬁijj 2. Restart enabled. 2. Attempt
3 gin. . server. 2. Attempt to malicious API
connect write to User
2. Game Streaming Module Test Cases via http://. B's profile.
These tests validated the core streaming functionality, | Expected | key.pemandce | Connection Firebase
automatic system configuration, and the critical input | Result rt.pem created; | refused orreset | Error:
isolation mechanism. HTTPS enabled. | (No insecure Perm1551on
access). Denied.
TABLE IVII :ctu?tl Certlflcat;esd. J]?rowser fi“e-d ertet.
STREAMER BINARY AUTO-CONFIGURATION esul regenerated; o connect via operation
Server starts on | HTTP (Correct). rejected by
Test Case ID TC_Strm_oo1 HTTPS. database
Related Feature | Foo2 (Game Streaming) rules.
ID Status Pass Pass Pass
Objective Verify automatic compilation of streamer
binary when missing. The tests provide empirical validation for key
Coverage Iltems | Reg-Sys-05 architectural decisions, most notably the efficacy of the
Steps Expected Actual Pass/Fail Input Isolation Engine in safeguarding the streaming session
Result Result from interface interference.

142

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v12i1.678

C. System Performance & Resource Utilization

Resource utilization was profiled to validate the
offloading architecture. Metrics were captured on both the
Host (game execution & encoding) and Client (stream
decoding) devices.

1) Host System: showed high computational load, with
CPU utilization peaking at ~76% and significant memory
usage (77%), as expected for simultaneous game
rendering and video encoding (see Figure 10).

II_CPU W 76% CPU Usage 7 100% Masimum Frequency L;J.
:Ipu; B 1078 KB/sec Disk 1O W 2% Highest Active Time i
!. Network I 3 Mbps Network /0 I 0% Network Utlization v

 Memory 1 39 Hard Fauhy/sec [77% Used Physical Memory v)

Fig. 10 Host System Performance during active game streaming

2) dlient System: Demonstrated efficient low-overhead
operation, with CPU utilization averaging ~21% and
stable memory usage (68%). Minimal disk /O and
network throughput (~1 Mbps) confirm the client's
lightweight role (see Figure 11).

\cm M 21% CPU Usage [T 100% Maximum Frequency v
o B BIGOITY]
\u.mck M 1 Mbps Network 1/0 B 0% Network Utiization v

[Memory W 0 Hard Faults/sec 1™ 68% Used Physical Memory "f_;

Fig. 11 Client System Performance during stream reception

This disparity (Host CPU load ~3.6x higher than Client)
validates the design goal for the intensive processing to be
offloaded to the server, enabling high-fidelity gaming on
low-end client hardware.

V. CONCLUSION

This research presented the design and evaluation of a
proof-of-concept, browser-based cloud gaming platform
that integrates low-latency game streaming with native
sodcial integration. The study demonstrates that modern
web technologies specifically WebRTC, Rust, and Firebase
can be used to implement a functional, interactive gaming
experience within a single-host architecture. Key
achievements include the implementation of a Hybrid
Overlay Architecture, which successfully renders social
interfaces directly atop hardware-accelerated game streams
without significant performance degradation, and the
validation of WebRTC for sub-100ms 1080p/60fps streaming
under controlled, real-world conditions. The work

Vol 12, Issue 1 (2026)

acknowledges that its single-host, proof-of-concept design
imposes clear limitations on scalability and prevents
features such as multi-instance support. Future research
should investigate adaptive bitrate algorithms for variable
network conditions, dedicated audio-offloading for voice
chat, and scalable backend designs using containerization to
enable concurrent user sessions. This study provides a
foundational implementation model for socially-aware
cloud gaming and demonstrates that high-performance,
browser-based streaming is technically feasible, offering a
pathway toward reducing hardware barriers and improving
accessibility in future scalable systems.

ACKNOWLEDGMENT

Authors hereby acknowledge the review support
offered by the IJPCC reviewers who took their time to study
the manuscript and find it acceptable for publishing,.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORS CONTRIBUTION STATEMENT
All authors contributed equally to this work.

DATA AVAILABILITY STATEMENT
There is no external or third-party data that support the
findings of this study.

ETHICS STATEMENT
This study did not require ethical approval

REFERENCES

[1] K. Kumar and M. Jha, “Cloud gaming: Redefining the future of
entertainment beyond conventional PCs,” Journal of Recent Innovation
in Computer Science Technology, vol. 2, no. 4, pp. 39-51, Oct. 2025, doi:
10.70454fJRICST.2025.20404.

[2] Statista, “Cloud gaming - Worldwide,” 2024. [Online]. Available:
https://www.statista.com/outlook{amo/media/games/cloud-
gaming/worldwide. [Accessed: Jan. 2026].

[3] O. S. Pefiaherrera-Pulla, C. Baena, S. Fortes, E. Baena, and R. Barco,
“Measuring key quality indicators in cloud gaming: Framework and
assessment over wireless networks,” Sensors, vol. 21, no. 4, p. 1387, Feb.
2021, doi: 10.3390/521041387.

[4] Entertainment Software Association, Power of Play: Global Report 2023,
Washington, DC, USA, 2023.

[s] NVIDIA Corporation, “GeForce NOW,” 2024. [Online]. Available:
https://www.nvidia.com/en-my/geforce-now/. [Accessed: Jan. 2026].

[6]J. M. John, “A comparative study on the user experience of PC gaming
vs cloud gaming,” EPRA International Journal of Multidisciplinary
Research (UMR), pp. 148—152, Apr. 2020, doi: 10.36713/epra4284.

[7] C. Baena, O. S. Pefiaherrera-Pulla, R. Barco, and S. Fortes, “Measuring
and estimating key quality indicators in cloud gaming services,”
Computer Networks, vol. 231, p. 109808, Jul. 2023, doi:
10.1016/j.comnet.2023.109808.

[8] A. K. Jumani et al., “Quality of experience (QoE) in cloud gaming: A
comparative analysis of deep learning techniques via facial emotions in
a virtual reality environment,” Sensors, vol. 25, no. 5, p. 1594, Mar. 2025,
doi: 10.3390/525051594.

143

International Journal on Perceptive and Cognitive Computing (1JPCC) Vol 12, Issue 1 (2026)
https://doi.org/10.31436/ijpcc.v12i1.678

[9] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoffeld, “An evaluation
of QoE in cloud gaming based on subjective tests,” in Proc. sthint. Conf. [12] MrCreativioot, “moonlight-web-stream,” GitHub repository, 2024.

Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), [Online]. Available: https://github.com/MrCreativzoo1/moonlight-web-
IEEE, Jun. 2011, pp. 330-335, doi: 10.1109/IMIS.2011.92. stream. [Accessed: Jan. 2026].

[10] M. Manzano, M. Uruefia, M. Suznjevid, E. Calle, J. A. Hernandez, and M. [13] J. C. Long and R. J. Toal, “Modeling patterns for JavaScript browser-
Matijasevic, “Dissecting the protocol and network traffic of the OnLive based games,” in Internet and Multimedia Systems and Applications /
cloud gaming platform,” Multimedia Systems, vol. 20, no. 5, pp. 451 747: Human-Computer Interaction, Calgary, AB, Canada: ACTA Press,
470, Oct. 2014, doi: 10.1007/500530-014-0370-4. 2011, doi: 10.2316/P.2011.746-018.

[11] “WebRTC,” in Multimedia Networks, Hoboken, NJ, USA: Wiley, 2016, pp.
213—222, doi: 10.1002/9781119090151.ch8.

144

