International Journal on Perceptive and Cognitive Computing (IJPCC)

https://doi.org/10.31436/ijpcc.v12i1.679

Vol 12, Issue 1 (2026)

Optimizing Load Balancing Framework for a Distributed
Local Network

Ubaid Ajaz', Zainab S. Attarbashi’, Sara Babiker Omer Elagib 2, Aisha Hassan Abdalla Hashim?

' Department of Computer Science, International Islamic University of Malaysia.
* Kulliyyah of Engineering, International Islamic University of Malaysia

*Corresponding author zainab_senan@iium.edu.my
(Received: 9" December 2025; Accepted: 2™ January 2026; Published on-line: 30 January 2026)

Abstract— Load Balancing is a critical and foundational challenge in systems and network performance,
especially in resource-constrained infrastructure environments. In which it requires careful alignment
between infrastructure limited resources and performance requirements. This paper presents a lightweight
deployment of a locally hosted web server on a small local network using off-the shelf devices. The
observations of this paper indicate effective distribution of traffic evolving through different deployment
stages. One node setup was implemented to be a baseline for performance comparison. And a 2-nodes setup
was built using NGINX to provide the required load balancing. Both implementations were tested using load
testing tools: Locust and Siege. Results were then compared based on standardized performance metrics:
scalability, response time, throughput, and server load. The 2-nodes implementation showed near-linear
scalability, with doubled throughput and CPU load dropped to 45%.

Keywords— Load Balancing, Resource Constrained, Local Network, Algorithms, Performance Metrics

[. INTRODUCTION

Local network infrastructure plays a crucial role in
establishing a scalable environment for a web server to
ensure high availability and performance, especially if there
are limited resources. A web server or application
specifically deployed for the purpose of cybersecurity
applications and awareness demands a network
infrastructure that can handle high volumes of traffic and
requests. This is where the concept of load balancing
requires immediate attention and involvement. Cloudflare
simply defines load balancing as the practice of distributing
computational workloads between two or more computers.
Load balancing ensures even distribution, maximizes
resource allocation, and provides fault tolerance,
preventing any single component of the network from
becoming a bottleneck [1], [2]-

Currently, there is a lot of existing work and research on
load balancing techniques and cloud computing in general.
These studies focus on the comparison of existing load
balancing algorithms alone or discuss how load balancing
works in a cloud infrastructure in a broader sense [3], [4].
However, there is a lack of studies focusing specifically on
the deployment of a load balancing setup in a small-scale
environment offering cost-effective solutions. While setting
up a locally hosted environment, acquiring high-
performance servers can prove to be a significant financial
challenge. Existing lab equipment lacks the required
processing power and memory capacity to support and
handle a fairly large number of users accessing the servers

131

for simultaneous use. Thus, implementing an optimized local
network with such off-the-shelf devices using load balancing
would provide a cost-effective alternative to buying
expensive servers and proprietary software [5]. This will
enhance the computational capacity of the whole network
to satisfy the needs of the system.

For local small-scale infrastructures, in a university lab for
example, with only a few servers in a local network, users
may face overload when multiple simultaneous connections
from users are there. In such scenarios, this can lead to
service slowdowns and failures. Effective load balance can
enhance applications performance in these situations and
ensure smoother user experience and improved traffic
control.

The rise of lightweight deployment frameworks such as
containerization with Docker and open-source load
balancers has made it feasible to implement robust load
balancing without enterprise-grade hardware [6], [7]
Technologies like Docker allow services to be containerized
and run on commodity hardware, while software-based load
balancers can efficiently distribute traffic at low cost.
Example of open-source software load balancers are NGINX
[8] and HAProxy [9]. They are both popular for Linux and
they support load balancing in layer 4 and 7. Other emerging
and popular software load balancers are Traefik [10] and
Envoy [11]. They offer more flexibility of configurations and
availability on integrations with container-based platforms.

[12]

International Journal on Perceptive and Cognitive Computing (IJPCC)

https://doi.org/10.31436/ijpcc.v12i1.679

The aim of this study here is to investigate some working
load balancing technologies that can apply to small-scale
local networks, and work towards adapting such
technologies for the enhanced distribution of resources
over a limited system. The very goal is to design and
implement a lightweight load balancing mechanism able to
manage the changing loads in an efficient manner in a basic
lab setup. The research seeks to answer how such load
balancing can be optimized using freely available tools like
HAProxy, what components are best suited for modest
infrastructure, and which metrics—such as throughput,
fault tolerance, and memory usage can effectively evaluate
performance [13].

This current accessibility of technology and the open-
source community enable small organizations to achieve
reliability close to that provided by large data centers, but it
also raises research questions. How well do standard load
balancing algorithms perform in a resource-constrained
local network? What trade-offs arise when using tools like
HAProxy and NGINX on minimal hardware? These questions
are significant for academia and small enterprises aiming to
optimize performance without significant investment [14].
This paper answers the questions set forth by analyzing the
implementation of a locally hosted CipherQuest, a
cybersecurity training and Capture the Flag (CTF) event
platform. The system is evaluated through three different
evolutionary phases: from the entry-level single-node server
to the more complex dual-node cluster with rudimentary
splitting of traffic, and finally to the robust dual-node
arrangement with a dedicated HAProxy load balancer. Using
performance parameters, such as response time,
throughput, CPU load, and so on, the results were
contrasted among different traffic management schemes.
The aim is to identify how well traffic could be distributed in
a small local network and which algorithms therefore
provide the best performance under that constraint. The
paper's outcome sheds light on the viability of setting up
load balancers in the limited environment and offers some
points to consider for similar deployments in the future.

The reminder of this paper is organized as follows.
Section Il presents research methodology and load balancer
design and implementation. Section 1l illustrates
experimentation results, and results discussion and
performance evaluation in section IV. Paper ends with a
conclusion in section V.

Il. METHODOLOGY

This study adopts mixed-methods experimental research
design, combining quantitative performance metrics (e.g.,
response time, throughput, CPU usage) with qualitative
system behavior observations (e.g., failover response, load
distribution consistency). The goal is to investigate how

Vol 12, Issue 1 (2026)

lightweight load balancing mechanisms perform in a small-
scale, resource-constrained local network and to evaluate
their efficiency under simulated traffic.

A. Environmental Setup
The experimental testbed for this paper comprises a
distributed local network consisting of two nodes. These
nodes are off-the-rack computers running on 8GB RAM each
connected via ethernet provided by the university LAN (1000
MBps). The operating system chosen was Linux with the
Ubuntu LTS distribution, given its optimization for server
tasks and lightweight deployment, catering to the need for
managing web applications and eliminating licensing costs
compared to a Windows Server. This setup reflects a
resource-constrained environment typical of a small lab or
classroom setup. The application deployed is an open-
source Capture-The-flag web platform used for
cybersecurity training exercises. This application serves as a
representative workload for this research that generates
typical web traffic (multiple concurrent users, database
queries, dynamic content). To ensure portability and ease of
management, containerization surrounds the full
application stack wusing Docker containers. These
lightweight virtualized units that packed the whole
application, dependencies, database and load balancer. This
abstracts the differences in the underlying OS environments
and provides a suitable platform for testing different node
setups and load balancing algorithms with simulated traffic
to gather results in terms of performance metrics which will
be later discussed in the paper.

To scrape and gather performance metrics of the servers,
the infrastructure was implemented and tested in two
phases:

e Stage 1: Single-Node Deployment (Baseline): In the initial
setup, only one PC was used to host the CTFd container.
A NGINX web server was running as a reverse proxy on
the same host to forward HTTP requests to the container
(and serve any static assets). NGINX was configured to
listen on the host’s IP and route all traffic to the local
CTFd application. This stage had no load balancing since
only one node served all requests. It established baseline
measurements for how the application performs on a
single server under load and these measurements are
then used to do a comparative analysis of performance
metrics with a load balancing strategy introduced later.

132

International Journal on Perceptive and Cognitive Computing (IJPCC)

https://doi.org/10.31436/ijpcc.v12i1.679

NGINX
(REVERSE PROXY)

APPLICATION
SERVER (CTFd)

DATABASE

b=
STAGE 1

Fig. 1 Single Node Deployment Architecture

l NGINX1 I | NGINX2 I
APPLICATION APPLICATION
SERVER SERVER
l REDIS I | DEDIS |
i) 1
[DATABASE H DATABASE I
= =
STAGE 2

Fig. 2 Dual Node Deployment Architecture

e Stage 2: Dual-Node with Load Balancing: In this stage, a
second PC was added to create the distributed setup
comprising two application servers independently
running Dockerized instances of CTFd and
synchronizing the database. Each machine was
configured with its own NGINX reverse proxy for local
handling of incoming web traffic from containers.
NGINX was the main load balancer in this scenario: on
each of the two servers, NGINX was statically
configured with an upstream block listing the CTFd
instances of both the local and remote server with
different load balancing algorithms, depending on
which scenario was being tested. This decentralized
style of balancing ensured that no single node would
become a bottleneck while also avoiding the need for a
central load balancer. Although these strategies were
limited, lacking features such as health checks or
adaptive request routing, they offered a lightweight
and functional method for traffic distribution. This stage
demonstrated the feasibility of achieving basic load
balancing using reverse proxy infrastructure, providing
early performance improvements without additional
overhead.

Vol 12, Issue 1 (2026)

B. Load Generation Tools

For this experimental setup, we used load generation tools
to simulate clients and generate load on the system. We
used three different industry standard tools: Apache Jmeter,
Siege and Locust. Siege, an HTTP load testing and
benchmarking utility tool is a command-line-based tool that
triggers a preset number of concurrent users (threads)
hitting an appropriate URL or set of URLs and consequently
reports the elapsed time, response time, and throughput
(transactions per second). Siege was used for fast stress
tests, such as bombardment of the CTFd home page or
challenge endpoints at 50, 100, 200 concurrent hits to
analyze pure throughput and server behavior. Locust is a
much more flexible load testing framework in which users
exist within Python codes. Locust lets you define more
complex user behaviors in Python code that can scale to
simulate millions of users. We wrote simple Locust scenarios
to simulate a typical user sessionin CTFd: logging in, fetching
the scoreboard, and opening a challenge page. Locust gave
us further stats (response time distribution, response time
percentiles) and allowed us to gradually ramp up users. This
tool was particularly useful in observing the system’s
behavior over time under sustained load and for checking if
an algorithm causes queue build-up on one server or not.
These two tools, while giving us a myriad of information,
gave us insight into the systems from a high-level
perspective of user experience and a low-level perspective
of request throughput.

C. Monitoring and Metrics

To gather fine-grained performance data from the running
system, Prometheus and Grafana were set up as the
monitoring stack. Prometheus is the open-source
monitoring solution that gathers the metrics data and stores
it in a time series database. Prometheus was configured to
scrape the metrics from each component: the Linux system
metrics on each of the nodes (CPU, memory, network
usage) via Node Exporter, Docker metrics including CPU
usage per container for specificity and custom metrics from
application if there were any (limited to infrastructure
metrics, as CTFd being a flask app did not natively expose
Prometheus metrics). The traffic simulation tools come with
their own statistics which were gathered manually and
through saved logs.

Grafana was then employed to visualize these metrics via
dashboards. It is an open-source analytics and interactive
visualization web application. Custom dashboards for key
performance indicators were set up, such as CPU usage of a
node, memory usage, load average, network traffic,
requests handled by a server, response time graphs over a
test, which allow us to cross-check the monitoring with the
Siege/Locust results. If Siege reports a slowdown at 200

133

International Journal on Perceptive and Cognitive Computing (IJPCC)

https://doi.org/10.31436/ijpcc.v12i1.679

users, for instance, that monitoring can tell whether the CPU
of one node maxed out or if memory or networking became
a bottleneck. Monitoring also ensured that our test
environment was fully operational (e.g., if one node went
down, we would see it in the metrics immediately and could
investigate).

The performance metrics mentioned below serve to
evaluate system behavior underload and the efficiency of
traffic distribution, and the overall resource consumption by
nodes. Each metric therefore exposes one or the other facet
of locally distributed network performance through
different stages.

1. Latency or Response Time
Measured as the end-to-end time taken for a request to be
processed from the client to the server and back. This
includes network latency, processing time on the server, and
any delays introduced by the load balancing mechanism.
Measurement was made for both median response times
and for the goth percentile not only to capture the average
performance but also the performance in peak load
conditions.

2. Throughput
The number of requests successfully processed by the
system per unit time, typically measured in requests per
second (RPS). Throughput provides an indication of the
system’s capacity to handle high volumes of traffic.

3. Server Load Balancing
Balanced load distribution among the servers forms the
heart of all load balancing strategies. Ideally, two servers
with exactly similar capabilities would share the whole
workload exactly equally.

4. CPU and Memory Utilization
Monitoring CPU and memory usage on each node provides
a low-level view of how efficiently resources are being used.
CPU utilization trends can reveal whether traffic is being
spread effectively, while discrepancies in CPU or memory
load between nodes may suggest imbalances in request
handling. Memory usage is also tracked to ensure
containerized services remain stable under stress, though in
lightweight deployments like CTFd, memory is typically a
secondary concern unless large-scale concurrency is
involved.

D. Testing Procedure

For each stage of deployment (and for each load balancing
algorithm in Stage 2,3), we conducted a series of tests to
measure performance:

Baseline single-node test: Using Siege, we bombarded
the single-node setup with incremental loads: a varied
number of concurrent users (each user continuously
requesting a mix of pages). We recorded the average
response time, throughput (requests per second), and

134

Vol 12, Issue 1 (2026)

observed the system resource usage. This established the
capacity of one server and provided critical baseline data for
later comparison with distributed configurations.

Dual-node manual split test: We repeated similar load
tests on the Stage 2 setup. When using NGINX's upstream
approach, we examined NGINX logs to confirm that roughly
half the requests went to each node. The performance
metrics here illustrate the benefit of having two servers.
During this stage, multiple NGINX-supported algorithms
were tested under identical conditions to analyze their
behavior in a dual-node setup. Specifically, round-robin
(default), least-connections (which routes new requests to
the less busy server), and IP-hash (which maps requests to a
server based on client IP) were configured and evaluated.
The same load testing tools—Locust, Siege, and Apache
JMeter—were used to simulate user traffic.

Il. RESULTS

This section visualizes the load testing metrics collected
during Stage 1, where a single-node architecture was
deployed using one PC hosting all core services (CTFd
application, database, Redis, and NGINX). Two types of load
tests were conducted using Locust and Siege.

Median Response Time per Endpoint - 100 User Load Test

300

Response Time (ms)

2 ol ~ "
5 &]]
H 2 s 3

w
=]

o

& o

Fig. 3 Locust Results with heavy load testing (100 users)

Median Response Time per Endpoint - 200 User Stress Test

300 |

Median Response Time (ms)
- 9 n
n =] w
= -] =

=
=1

w
=]

Fig. 4. Locust Results with stress load testing (200 users)

International Journal on Perceptive and Cognitive Computing (IJPCC)

https://doi.org/10.31436/ijpcc.v12i1.679

TABLEI
SIEGE RESULTS WITH HEAVY LOAD TESTING
Metric Value Result
Test Duration 5 minutes
Concurrent Users 255 (user cap hit)
Transactions 60,837

Success Rate 100% (0 failures)
1.24 seconds
203.28 requests/sec

38.08 MB/sec

Avg. Response Time
Transaction Rate
Throughput

This section visualizes the load testing metrics collected
during Stage 2, where a two-node load-balanced
architecture was deployed. In this setup, core services such
as the CTFd application, database, Redis, and NGINX were
distributed across two PCs, with NGINX acting as a reverse
proxy to balance incoming traffic between the nodes. The
same load testing tools, Locust and Siege, were used to
evaluate performance under identical conditions as Stage 1.

Median Response Time per Endpoint - 2 Node Load Balanced Setqﬁ, (Simulated)
120

Response Time (ms)
2

2

w""f

Endpaint

&

Fig. 5. Locust Results with heavy load testing (100 users)

Median Response Time per Endpoint - 2 Nodg Load Balanced Setup (200 Users, Simulated)

160
140
140

10

Response Time (ms)
3 B8

o

&

Endpoint

Fig. 6. Locust Results with stress load testing (200 users, increased ramp
up)

Vol 12, Issue 1 (2026)

TABLEII
SEIGE RESULTS S5TAGE 2
Metric Value Result
Test Duration 5 minutes
Concurrent Users 255 (user cap hit)
Transactions 79,320

Success Rate 100% (0 failures)
0.72 seconds
264.4 requests/sec

49.61 MB/sec

Avg. Response Time
Transaction Rate
Throughput

Median Response Time per Endpoint (100 User Locust Test)

310 = Stage 1
300 - rage 2

250

Medlan Response Time (ms)

fchallenges fogin

Fig.7 Stage 1 and Stage 2 Comparison for heavy load test

Median Response Time per Endpoint (200 User Stress Test)
ol = Stage 1
m— Stage 2

Median Response Time (ms)
]
8

! ichallenges

Fig. 8 Stage 1 and stage 2 comparison of stress load test

IV. DISCUSSION

The findings of this study clearly demonstrate the
performance benefits of introducing a two-node distributed
architecture in a local network environment using off-the-
shelf machines and free software tools. Through both
controlled (100-user) and stress-level (200-user) load testing,
the system showed substantial improvements in
throughput, response time, and load distribution when
transitioned from a single-node to a dual-node setup with
load balancing via NGINX.

135

International Journal on Perceptive and Cognitive Computing (IJPCC)

https://doi.org/10.31436/ijpcc.v12i1.679

The single-node deployment, although sufficient for
moderate traffic, quickly reached saturation under heavier
loads, leading to CPU utilization nearing 90% and median
response times exceeding 300 ms for critical endpoints like
flogin. In contrast, the two-node setup reduced peak CPU
loads per server to approximately 45-50%, effectively
halving the processing burden on each machine. Median
response times dropped significantly by over 50% in some
endpoints and overall throughput more than doubled,
showcasing linear or near-linear scalability within the
constraints of the testbed. Despite these gains, several
limitations emerged. The project operated under strict
hardware constraints, with only two physical machines
available for deployment. This prevented the
implementation of a more advanced Stage 3 architecture,
which would have introduced a dedicated load balancer
node capable of supporting adaptive algorithms such as
least-connections, IP-hash, or weighted round-robin. These
strategies could not be fully explored, as true comparative
analysis of load balancing algorithms typically requires a
larger server pool to distribute traffic across diverse
backend conditions. A more intelligent, feedback-aware
load balancer could mitigate such issues, but its
implementation was beyond the resource scope of this
project.

V. CONCLUSION

In conclusion, this work validates the hypothesis that a
lightweight, locally-hosted web server cluster with NGINX
load balancing significantly enhances performance in
resource-constrained environments. The two-node
deployment achieved nearlinear scalability, doubling
throughput while reducing individual server load. Future
work should explore scaling beyond two nodes,
incorporating dynamic load balancing algorithms, and
monitoring with more granular observability tools to refine
traffic distribution decisions to provide a practical, low-cost
model for small-scale environments such as university labs,
classrooms, or lightweight training platforms.

ACKNOWLEDGMENT

The authors hereby acknowledge the review support
offered by the IJPCC reviewers who took their time to study
the manuscript and find it acceptable for publishing,.

Vol 12, Issue 1 (2026)

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORS CONTRIBUTION STATEMENT
All authors contributed equally to this work.

DATA AVAILABILITY STATEMENT
There is no external or third-party data that support the
findings of this study.

ETHICS STATEMENT
This study did not require ethical approval

REFERENCES

[1] N. Arora, P. Saha, and S. Sinha, “A review on load balancing
algorithms in cloud environment,” Int. J. Sci. Technol. Res., vol. 10, no.
1, Pp- 142-148, 2021.

[2] R. Tripathi, D. Dutta, and S. Sanyal, “Load balancing for resource
allocation in cloud computing using live migration of virtual
machines,” Procedia Comput. Sci., vol. 167, pp. 116—124, 2020.

[3] A.T. Akinwale and K. S. Adewole, “Performance evaluation of load
balancing algorithms in cloud computing,” Int. J. Comput. Appl., vol.
178, no. 36, pp. 1-6, 2019.

[4] S.Singh and I. Chana, “Cloud resource provisioning: survey, status
and future research directions,” Knowl. Inf. Syst., vol. 49, pp. 1005—
1069, 2016.

[s] R. Kumar, A. S. Rajawat, and S. Arora, “A hybrid algorithm for
efficient load balancing in cloud computing environment,” Cluster
Comput., vol. 23, no. 4, pp. 2619-2635, 2020.

[6] D. Merkel, “Docker: lightweight Linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, p. 2, 2014.

[71 W.Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, Oct.
2016.

[8] NGINX official website. NGINX, Inc.
https://nginx.org/. Accessed: Jan. 28, 2026.

[9] HAProxy official website. HAProxy Technologies. [Online]. Available:
https://www.haproxy.org/. Accessed: Jan. 28, 2026.

[10] Traefik Proxy official website. Traefik Labs. [Online]. Available:
https://traefik.io/traefik. Accessed: Jan. 28, 2026.

[11] Envoy Proxy official website. Envoy Proxy. [Online]. Available:
https:/www.envoyproxy.io/. Accessed: Jan. 28, 2026.

[12] A. Johansson, HTTP Load Balancing Performance Evaluation of

HAProxy, NGINX, Traefik and Envoy with the Round-Robin Algorithm,

B.S. bachelor’s thesis, Dept. of Informatics, Hogskolan i Skdvde,

Skévde, Sweden, 2022. [Online]. Available:

http:/furn.kb.sefresolve?urn=urn:nbn:se:his:diva-21475

L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology of

cloud computing,” in Proc. 2008 Grid Comput. Environ. Workshop,

IEEE, 2008.

S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource

provisioning cost in cloud computing,” IEEE Trans. Serv. Comput., vol.

5, NO. 2, pp. 164—177, Apr.—Jun. 2012.

[Online]. Available:

[13]

[14]

136

