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Abstract — The rapid advancement of generative models has enabled the creation of highly realistic fake
multimedia content, including altered images, deepfake videos, and synthetic audio. These forgeries
undermine information integrity and pose significant societal risks, especially by encouraging
misinformation, digital fraud and impersonation. As these threats directly affect public trust and institutional
transparency, they challenge the goals outlined in SDG 16: Peace, Justice, and Strong Institutions, which
focuses on reducing corruption, preserving information integrity, and ensuring accountable, trustworthy
systems. To address these issues, this paper proposes a deep learning-based system that classifies
multimedia content across three modalities, which are image, video, and audio. Unlike conventional
multimodal fusion approaches that necessitate paired data inputs, this paper introduces a novel routing-
based unification architecture. The suggested framework makes use of a content-adaptive routing
mechanism that treats each modality independently. Using a dual-backbone Swin Transformer and
EfficientNet for images, Video Swin Transformer for video, and Wav2Vec 2.0 for audio, the system
automatically determines the type of input file and sends it to the relevant specialized deep learning
classifier. This design allows for a versatile, single-entry-point forensic tool that maintains high accuracy by
leveraging domain-specific experts without the computational overhead of processing multiple streams
concurrently. Experimental results demonstrate strong performance across individual modalities, with the
audio model achieving 96.95% accuracy and the image model showing robust precision despite challenges
posed by high quality generative forgeries.
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I.  INTRODUCTION

The rapid development of generative models and artificial
intelligence (Al) has drastically changed how multimedia
content is created and altered. While these technologies
have driven innovation in visual effects, digital media
production, and human-computer interaction, they have
also promoted the emergence of deepfakes, a highly
realistic synthetic images, videos, and audio. Reliable
detection methods are desperately needed because such
content has the potential to disseminate false information,
impersonate people, and weaken public trust in digital
communication.

Deepfake techniques, including GANs, encoder-decoder
models, and diffusion models, produce synthetic media that
closely resembles real content, making manual detection
more challenging [1]. These deepfakes have been used in
identity fraud, political manipulation, disinformation
campaigns, and various forms of social engineering, raising
concerns for people, organizations, and public institutions.
Consequently, the research community has prioritized
developing automated systems that can distinguish
between real and altered multimedia content across various
modalities.
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Although high-performance detection algorithms are
available, there is still a big usability and system integration
gap. Currently, many cutting-edge detection models are
extremely specialized and made to handle a single modality,
such as independently analysing only images, only video or
only audio. Forensic analysts and regular users, who
frequently need different software tools or platforms to
verify various file types, are left with a fragmented
landscape as a result. For instance, to verify a suspicious
news report, it might be necessary to use one tool to look at
the headline image and another environment to examine an
audio clip that goes with it. This lack of unification slows
down the reaction to disinformation campaigns and causes
friction in the verification process.

This paper supports a unified “Cross-Media Fake Content
Detection” framework using separate deep learning
classifiers to address this fragmentation. This method
emphasizes adaptability and architectural independence by
developing core innovation of routing architecture that
serves as a single interface for various media formats. The
system cleverly directs the input to the most competent
independent deep learning model by examining its structure.
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To ensure the resilience of these independent classifiers,
this paper makes use of a variety of modality-specific
benchmark datasets. For images, the IMD2020 dataset
offers a balanced set of real and manipulated samples
involving inpainting and real-world forgeries [2], while the
CASIA 2.0 dataset offers traditional image modifications like
splicing, and copy-move editing. In the video domain, the
DeeperForensic1.0 (v2) dataset, which contains complex
face-swapping manipulations, serves as a high-quality
benchmark for deepfake detection [3]. For audio, the
ASVspoof dataset provides standardized real and spoofed
speech samples, including synthetized voice-converted and
synthetized audio [4]. Furthermore, the models of images,
video, and audio are trained on distinct repositories to
ensures that the specific artifacts unique to each medium
are learned accurately. This data-driven strategy ensures
that the system is accurate in its detection capabilities
across various content types and unified in its interface,

In the end, this methodology guarantees that a user can
confirm a suspicious file in a single streamlined environment,
regardless of whether it is an image, voice recording, or
video clip. This project intends to provide a detection tool
that is both accurate and practically deployable for real-
world scenarios where the format of the incoming threat is
unpredictable by combining specialized, independent
classifiers under a single “Cross-Media” umbrella. It is crucial
to note that the developed framework is not a fully
deployable commercial forensic tool, but rather a research-
oriented prototype evaluated under controlled conditions
to show the viability of cross-media routing.

II. RELATED WORK

This paper builds on several works that remain relevant in
today’s multimedia fake news landscape. Transformer-
based models have become a strong foundation due to their
pretraining on large, modern datasets which reduce the
need for traditional handcrafted feature engineering.

For image forgery detection, this paper adopts a hybrid
approach using Swin Transformer and EfficientNet, chosen
for their ability to capture both global and fine-grained
details. Prior work has tended tothis stufy lean toward one
side of this spectrum, which creates a clear comparative
context for the present aproach. B. Singh et al. (2022) [9]
relied on EfficientNet-Bo within a multimodal setting, pairing
it with a text encoder for credibility analysis. Their reliance
on EfficientNet provided strong local feature extraction, but
their fusion design predated transformer-based attention
mechanisms. Compared with that framework, the current
study benefits from Swin Transformer’s hierarchical global
reasoning, providing a broader contextual understanding
that EfficientNet alone could not capture in Singh et al.’s
setup.
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Similarly, Almsrahad et al. (2024) [10] used EfficientNet-
Bo, though they focused on ELA-processed images from
CASIA. Their results highlight EfficientNet’s usefulness for
low-level forensic patterns, yet their dependence on ELA
artifacts limits robustness to modern social-media imagery.
In contrast, this paper avoids hand-crafted preprocessing
and instead integrates EfficientNet with Swin Transformer
to balance low-level artifact detection with higher-level
semantic consistency, addressing the brittleness seen in
ELA-driven pipelines.

More recent work has leaned toward transformer-only
designs. Gong et al. (2024) [11] applied Swin Transformer to
video frames, introducing consistency-loss mechanisms to
strengthen temporal generalization. Their focus on
temporal cues, however, leaves open the question of how
Swin could be paired with CNN-based forensic extractors.
Mishra et al. (2023) [12] further showed that Swin
outperforms many CNN baselines in robustness, but their
evaluation—like other Swin-centric studies—prioritizes
transformer capacity over hybrid feature diversity.

Across these studies, the pattern is clear where
EfficientNet-based approaches excel at localized artifacts
but struggle with global context, while Swin-based
approaches capture global structure yet often overlook lo-
level forensic detail. By combining both, this paper positions
itself between the two extremes, aiming to inherit the
strengths of each and mitigate their individual weaknesses.

For audio forgery detection, this paper uses a hybrid of
wavavecl, BiLSTM, and an attention mechanism to balance
high-level speech representations with temporal modelling.
Prior work by J. M. Martin-Donas et al. [13] established
wavavec2 as a strong front-end feature extractor for audio
deepfake detection. While their model combined wavavec2
with downstream classifiers, architectures integrating
BIiLSTM with attention were not explored, leaving a gap in
modelling longer temporal dependencies as well as localized
acoustic cues.

Samia et al. (2024) [14] explored a hybrid architecture of
CNN, BiLSTM, and Multi-Head Attention, showing that
combining temporal modeling with attention significantly
boosts reliability. A key limitation, however, is their use of
CNN-based spectral features, which restricts the model to
handcrafted inputs. We address this by employing wavavec2
to work directly with raw waveform representations. This
approach leverages learned speech embeddings rather than
static spectral cues. Ultimately, by coupling wavavec2 with
BiLSTM and attention, our model captures both global
patterns and local anomalies more effectively.

For video forgery detection, this paper employs Video
Swin Transformer as a standalone backbone, prioritizing its
capacity to learn complex spatio-temporal patterns directly
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from raw video dlips. This produces a more robust
representation of motion-based manipulations compared to
models that focus only on spatial cues. In contrast, Khalid et
al. (2023) [15] used a Swin Y-Net Transformer, where the Y-
Net design fused multi-scale features through parallel Swin
branches. Their model effectively captured both local and
global forgery signals, yet the limited dataset in their study
introduced overfitting, especially for specific manipulation
types. This restricts the generalizability that our Video Swin
implementation aims to preserve through more balanced
and diverse training data.

Deressa Zhou et al. (2023) [16] explored a different angle
by combining ConvNeXt, Swin Transformer, and AE/VAE
components to detect visual artifacts and latent
inconsistencies.  Their  hybrid  design  improved
generalization on unseen deepfake datasets thanks to the
latent reconstruction loss. However, their approach
remained frame-level and lacked a dedicated temporal
modeling head, meaning it could not fully exploit motion
cues. The method also depended heavily on precise face
extraction; performance degraded noticeably when
evaluated on full-frame inputs. In contrast, the current study
avoids such dependency by using Video Swin’s native spatio-
temporal processing, reducing reliance on face cropping and
allowing the model to handle a wider range of video
structures.

Broadly, this paper unifies image, audio, and video
detection under a single framework to address the
fragmentation in forensic tooling. Although cross-modal
analysis has been studied in the past, these studies

frequently suffer from dependency on paired inputs. In 2022,

Zhou et al. [17] applied CLIP to alignimage and text features,
improving fake-news detection on datasets such as Weibo,
PolitiFact, and GossipCop. Such fusion-dependent
architectures work well for news articles that contain both,
but they fall short when analysing isolated media files (such
as a standalone audio recording or video clip) in the absence
of related text.

Two years later, Ma et al. (2024) [18] proposed an event-
aware multi-view fusion framework combining text, image,
and additional signals. Their model reduced ambiguity in
mismatched news content by emphasizing event structure,
which is beneficial for real-world news contexts.
Nevertheless, the system is computationally demanding and
less useful for general-purpose forensics where the context
is unknown due to its reliance on event-level consistency.

This supports the credibility of our study, since we focus
on a ‘content-agnostic’ system. Unlike these rigid fusion
architectures, our study suggests a Cross-Media Routing
Framework. Our method does not require simultaneous
data inputs by treating each modality with a specialized,
independent deep learning classifier. This gives the system a
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degree of flexibility that strict multimodal fusion models
don't, ensuring that it works whether the user submits a
single image, a voice recording, or a video file,

I1l. METHODOLGY

The procedure for developing the cross-media fake
content detection framework is described in this section.
The intelligent routing mechanism that unifies them comes
after dataset preparation, preprocessing pipelines, model
architecture, training methods, and evaluation metrics for
each independent classifier.

A. Fake Image Detection

e Dataset preparation
A final custom dataset of 28,000 images was created by
randomly selecting 14,000 samples per class using a
fixed seed to ensure class balance. Atuple (image path,
label) was used to store each entry, with label o
denoting real and label 1 denoting fake. To ensure
strong generalization and avoid information leakage,
the dataset was divided into 70% training, 20% validation,
and 10% testing after being shuffled using
sklearn.utils.shuffle.
Preprocessing
Two preprocessing pipelines were designed. The
training pipeline included extensive augmentation to
improve robustness against a variety of manipulation
techniques. The transformations included
RandomResizedCrop, RandomHorizontalFlip,
RandomRotation (x10%), ColorlJitter,
RandomPerspective, GaussianBlur, RandomErasing,
additive noise via a Lambda transform, and ImageNet
normalization. These augmentations aid in exposing the
model to generative artifacts and texture irregularities
that are commonly found in manufactured media [5].
The evaluation pipeline only used to resize to
224x224 pixels, tensor conversion, and ImageNet
normalization to ensure consistent and unbiased
testing conditions.
Model Architecture
A dual-backbone architecture was employed to take
advantage of complementary visual representations.
The first backbone, a Swin Transformer, offers
hierarchical global-local modelling for the purpose of
detecting subtle deepfake artifacts. The second
backbone, EfficientNet-B3, uses a compound scaling
design to capture fine-grained texture irregularities.
Both backbones were kept completely frozen
throughout training to minimize overfitting and training
time.



International Journal on Perceptive and Cognitive Computing (IJPCC)
https://doi.org/10.31436/ijpcc.v12i1.651

Let Fn,, and Fy indicates the embeddings
generated by EfficientNet-B3 and the Swin Transformer.
The definition of the fused representation is:
F= [Fimg ’ Fef‘f];

where [;] denotes vector concatenation. This fused
feature vector is subsequently transformed into a
binary real-fake prediction by a multi-layer classifier.
e Training
The model was optimized using a cross-entropy
objective with regularization and a cosine-annealing
learning-rate schedule. To increase training efficiency,
automatic mixed precision was employed. Based on
validation performance, early stopping with a patience
of five epochs was used to avoid overfitting.
e  Evaluation

Performance was evaluated on the held-out test set
using accuracy, precision, recall, F1-score, ROC-AUC,
confusion matrix, and a thorough per-class classification
report. These metrics are in line with accepted methods
in research on deepfake detection

B. Fake Video Detection

e Dataset preparation

For the video-based fake multimedia detection
experiment, this paper utilized the DeeperForensic1.0
dataset, a large-scale benchmark for face manipulation
detection. The dataset consists of high-quality real
videos featuring 100 professional actors and their
corresponding Al-generated videos, created using an
end-to end face swapping framework []. A curated
video dataset was created by sampling 2,00 real and
2,00 fake videos using a fixed seed to maintain class
balance. A tuple (video path, label) was used to store
each dataset entry, with o denoting real and 1 denoting
fake. To maintain the class distribution, the dataset was
divided into 80% training and 20% validation.

® Preprocessing

Videos were preprocessed by uniformly sampling 8
frames per video, resizing frames to 224x224 pixels, and
normalizing them using ImageNet statistics. During
training, frame-level augmentation such as
RandomResizedCrop and RandomHorizontalFlip were
applied to improve robustness against varying visual
content. For evaluation, only resizing and normalization
were applied to maintain consistency.

e  Model architecture

The foundation for video feature extraction was a Swin
3D Transformer (Tiny) that had been pretrained. To
convert the extracted embeddings to binary predictions,
a linear layer was used in place of the original
classification head. Let F_vst represent the embeddings
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generated by the Swin3D backbone. The final forecast is
calculated as follows:

y= Softmax(FC(Fvst))
Where FCis the fully connected classification layer.
e Training
The model was trained using cross-entropy loss and the
Adam optimizer with a learning rate of 1 x 107*.
Because of memory limitations, the batch size was set
to 5. The model with the lowest validation loss was
saved as the last checkpoint, and early stopping was
implemented based on validation loss. To maintain
consistent input shapes, video padding and frame
extraction were carefully handled during the ten epochs
of training.
e  Evaluation
The model was evaluated on the validation set using
confusion matrix to assess per-class performance. The
approach guarantees that the model retains
generalization to unseen samples while learning
discriminative temporal and spatial patterns suggestive
of manipulated videos.

C. Fake Audio Detection

e Dataset preparation

The audio modality was developed using the ASVspoof
2019 Logical Access (LA) corpus, which contains of
bonafide human speech and spoofed utterances
generated through various text-to-speech and voice
conversion systems [4]. To ensure a controlled and
balanced training set, all 2,580 bonafide samples were
kept and matched with 2,580 randomly chosen spoofed
samples using a fixed seed. For the development and
evaluation subsets, stratified sampling was then used to
reduce both subsets while maintaining the initial class
imbalance, yielding in 410 bonafide and 3,590 spoof files
for development and 413 bonafide and 3,587 spoof files
for evaluation. A clean, organized dataset appropriate
for  representation learning and subsequent
classification is created by pairing each audio file with its
matching label (o=bonafide, 1=spoof).

®  Preprocessing

The pretrained Wav2Vec 2.0 model, which offers self-
supervised embeddings that capture phonetic, spectral,
and prosodic cues pertinent to spoof detection, was
used to transform all audio files into fixed-length
feature representations. The extracted embeddings
were stored as PyTorch tensors to ensure consistent
input  dimensionality and  prevent repeated
computation. Since audio duration varies among
utterances, sequences were only padded at the batch
level during loading, allowing the model to process
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variable-length speech while maintaining temporal
patterns.

Model Architecture

The classifier consists of a bidirectional LSTM and an

attention mechanism that highlights the most
informative temporal frames for differentiating
between bonafide and spoofed speech. The

bidirectional design allows the model to capture long-
rage temporal dependencies, while the attention layer
generated a weighted representation that concentrates
on segments with spoofrelated artifacts. The
aggregated representation is mapped to a binary
output (bonafide vs. spood) by a fully connected layer.

e Training

The model was trained using cross-entropy loss and the
Adam optimizer with a fixed learning rate. Training
proceeded for a limited number of epochs, and the final
model was chosen based on the lowest validation loss
to reduce overfitting. Since the dataset contains class
imbalance in the development and evaluation sets,
metrics were tracked across both classes to guarantee
stable generalization.

e  Evaluation

Accuracy, precision, recall, F1-score, and confusion
matrices were used to evaluate the model’s
performance, enabling a comprehensive understanding
of both bonafide and spoof classes. This evaluation
framework provides insight into false-accept and false-
reject tendencies, which are crucial in anti-spoofing
applications. The modular design also ensures that the
audio classifier can be easily incorporated into the entire
multimodal late-fusion pipeline.

D. Cross-Media Routing and System Integration

To operationalize the separate classifiers into a single,
coherent framework, a unified inference class was
created using PyTorch. By acting as an intelligent router,
this system shields the user from the intricacies of the
underlying model.

e System Initialization and Resource Management

All three pre-trained model architectures are loaded
into GPU memory (cuda) by the system upon
instantiation. The specific weights for each classifier are
loaded from independent .pth checkpoints. By
maintaining these as separate files, the system allows
for the individual updating of a particular modality
without necessitating a full system retraining.
Intelligent Input Routing

A routing mechanism based on file extension is used in
the core logic. The system examines the extension
when a file path is passed to the predict() function to
identify the proper processing stream. If an unspoorted
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format is detected, the system raises an error, enduring
processing stability.

e Dynamic Preprocessing

The inference pipeline places more emphasis on
consistency than training pipelines, which heavily rely
on augmentation. To ensure that input tensors match
the dimensions required by the corresponding
backbones, the system uses OpenCV (cv2) to sample
fixed video frames, torchaudio to normalize audio
sampling rates, and PIL to resize images.

Unified Output Standardization

The system creates a probability distribution by passing
the raw model logits through a Softmax layer,
regardless of the modality employed. Three essential
metrics are included in the final output, which are the
modality employed, the prediction label, and a
confidence score.

IV. RESULTS
A. Fake Image Detection

The experimental results for fake image detection is
presented in Table. 1. Similarly, Figure 1 shows that the model
performed well on the held-out test set consisting of 2,800
images. Overall, the model achieved an accuracy of 73.4%,
precision 72.0%, recall of 76.3%, and an Fi-score of 74.1%,
proving a balanced performance in detecting real and fake
images.

TABLE |
RESULT OF FAKE IMAGE DETECTION ON THE EVALUATION SET.
Metric Score (%)
Accuracy 73.4
Precision 72.0
Recall 76.3
F1-score 74.1

According to per-class results (Table 2) and confusion
matrix (Figure 1), the model classified 990 as real (70.5%) out
of 1,405 real images, while 415 were misclassified as fake.
Conversely, 1,065 images were accurately detected as fake
(76.3%) among 1,395 fake images, whereas 330 images were
incorrectly labelled as real. This illustrates the model’s
comparatively better ability to identify phony images,
probably because of unique generation artifacts that are still
present in contemporary synthetic image pipelines.

TABLE Il
CLASSIFICATION REPORT (PER-CLASS) FOR FAKE IMAGE DETECTION ON THE
EVALUATION SET
Precision (%) | Recall (%) | Fi-score (%)
Real (0) 75.0 70.5 72.7
Fake (1) 72.0 76.3 741
Accuracy | 73.4 73.4 734
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Fig. 1 Confusion Matrix for fake image detection

The model’s discriminative ability is further supported by the
ROC curve in Figure 2, which shows strong separability
between the real and fake classes with a ROC-AUC of 0.824.
The high AUC implies that the features successfully improve
the model’s capacity to discern minute cues present in
altered images.

ROC Curve
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Fig. 2 ROC Curve for fake image detection

B. Fake Video Detection

Based on Table 3, an independent test set of 800 video
samples, which have 400 real and 400 fake, was used to
assess the video deepfake detection model. The model
achieved 100% accuracy, precision, recall, and Fi1-score.

TABLEIII
RESULT OF FAKE VIDEO DETECTION ON THE EVALUATION SET
Metric Score (%)
Accuracy 100
Precision 100
Recall 100
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| F1-score | 100 |

The per-class classification report shows perfect performance,
with 100% precision, recall, and F1-score for both real and fake
videos, yielding an overall evaluation accuracy of 100% (see
Table 4).

TABLE IV
CLASSIFICATION REPORT (PER-CLASS) FOR FAKE VIDEQO DETECTION ON
THE EVALUATION SET.

Precision (%) | Recall (%) | Fi-score (%)
Real (0) 100 100 100
Fake (1) 100 100 100
Accuracy 100

According to Figure 3, a flawless classification pattern
can be seen. All 400 of real videos were correctly classified
as real (100%), with zero instances mistakenly identified as
fake. Similarly, the model achieved a perfect score for fake
videos (100%), correctly identifying each of the 400 instances
with no false negatives. The absence of both false negative
and false positive shows that the model maintains maximum
specificity and sensitivity. Furthermore, the balanced
precision and recall across classes proves that the model is
unbiased toward either the real or fake class.

Confusion Matrix
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True Labe!

FAKE(1)

S
A

é_"‘

D
&
Cis

Predicted Label

Fig. 3 Confusion Matrix for fake video detection

The ROC curve in Figure 4 shows perfect class separability
with a ROC-AUC of 1.000, further supports the model’s
discriminative  ability. This implies that complex
spatiotemporal anomalies and synthesis artifacts present in
phony videos are successfully captures by the Video Swin
Transformer, enabling a clear differentiation between real
and fake content.
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C. Fake Audio Detection

Fake audio detection achieved strong performance on the
evaluation set. The model recorded an accuracy of 92.2%,
demonstrating reliable overall classification. High precision
of 99.4% indicates minimal false positives, while a recall of
91.8% reflects effective identification of fake audio samples
(see Table 5). The F1-score of 95.5% confirms a balanced and
robust detection capability, highlighting the model’s
effectiveness in distinguishing authentic and manipulated
audio content under realistic evaluation conditions.

TABLEV
FINAL EVALUATION METRICS FOR FAKE AUDIO DETECTION ON THE
EVALUATION SET.

Metric Score (%)
Accuracy 92.2
Precision 99.4
Recall 01.8
F1-score 95.5

The model successfully identified 392 real samples
(94.9%) out of 413, while 21 were incorrectly classified as fake,
according to the per-class performance displayed in Tale 6
and the confusion matrix in Figure 5. On the other hand, out
of 3,587 fake samples, the model correctly identified 3,294
(91.8%) of them, with 293 being mistakenly classified as real.
This finding shows that the model is strong in detecting fake
audio, as reflected in the very high precision, indicating that
when the model predicts an audio clip as fake, it is almost
always correct. Because of the inherent variability in human
speech, real audio is still more difficult to model, as indicated
by the comparatively lower recall for the real class.

TABLE IV
CLASSIFICATION REPORT (PER-CLASS) FOR FAKE AUDIO DETECTION ON THE
EVALUATION SET.

Precision (%) | Recall (%)
57.0 95.0

Fi-score (%)
71.0

Real (0)
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Fake (1) 99.0 92.0 95.0
Accuracy 92.0
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Fig. 5 Confusion matrix for fake audio detection.

The ROC curve in Figure 6, which shows a high level of class
separability with a ROC-AUC of 0.972, further supports the
model’s discriminative ability. This suggests that the
extracted Wav2Vec 2.0 embeddings effectively capture
subtle acoustic inconsistencies and synthesis artifacts found
in fake audio when combined with the BiLSTM and attention
mechanism.
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Fig. 6 ROC Curve for fake audio detection
D. System Integration and Cross-Media Verification

The fully integrated class was tested on a set of seven
random samples that included a variety of media formats in
order to verify the efficacy of the suggested routing
architecture. To test robustness, the test set contained real-
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world media and benchmark samples from IMD2020, CASIA,
DeeperForensic1.0, and ASVspoof.

{'modality_used’: ‘Image’, ‘'prediction’: 'FAKE', 'confidence': '992.81%"'}
{'modality_used’: 'Image’, 'prediction’: 'REAL', 'confidence': '71.61%"}
{'modality_used’: 'Video', 'prediction’: 'FAKE', ‘confidence': '1@@.80%'}
{'modality_used’: 'Video', 'prediction’: 'REAL', 'confidence': '1@@.00%'}
{'modality_used’: 'Video', ‘prediction’: 'FAKE', ‘confidence': '99.92%'}
{'modality_used’: 'Audio’, 'prediction’: 'REAL', 'confidence’': '99.88%"}
{'modality_used’: 'Audio’, 'prediction’: 'FAKE', 'confidence': '99.84%'}

Fig. 7 Sample predictions of multimodal detection

Based on Figure 7, the system successfully routed input files
to the appropriate modality. This demonstrates that the
predict() function’s logic is dependable for mixed-media
workflows. Across all modalities, the integrated system
showed high levels of confidence. While synthetic content
was consistently detected with confidence scores
exceeding 99%, the lowest confidence recorded for a real
image was 71.61%.

V. DISCUSSION

Cross-media fake news detection matters because
misinformation spreads quickly and can destabilize
communities. False content often carries emotional charge,
creates confusion, and fuels misleading narratives that
people may unknowingly amplify. Systems that can detect
manipulated or misleading content across multiple
modalities help reduce that risk and support healthier
information ecosystems.

This paper employs a Content-Adaptive Routing
Framework to tackle the problem of various multimedia
forgeries. Our system operates as a unified forensic
interface, in contrast to inflexible multimodal systems that
require the integration of disparate data stream which often
failing when a user provides only one file type. The input
format (image, video, or audio) is dynamically identified by
the system's routing logic, which then sends it to a
specialized "expert" deep learning classifier. The system can
successfully verify isolated media files without relying on
paired data (e.g., requiring audio to accompany video) in
part to this strategy's high availability and robustness.

Compared to monolithic fusion models, the suggested
routing architecture has several engineering advantages.
Because resources are only allocated to the appropriate
model for a given input (for example, the heavy Video Swin
model is never loaded into memory when analysing a simple
JPEG), it is producing a computationally efficient system.
Additionally, the design is very modular; future
enhancements to the audio component, forinstance, can be
incorporated without requiring a full retraining of the image
or video subsystems by simply updating the AudioModel
class weights. The framework is a workable, scalable
solution for real-world multimedia verification because of its
flexibility.
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A system like ours could be applied during elections,
integrated into newsroom verification pipelines, or used in
social-media monitoring to flag suspicious content before it
gains traction.

Despite the strengths, there are limitations. Our project
relies on publicly available datasets, which are relatively
small and may not capture the full diversity of real-world
social-media content. A larger, more varied dataset would
improve generalization. Computational cost is another
constraint: multimodal deep learning requires significant
processing power, which can make experimentation slower
and deployment more expensive.

VI. CONCLUSION

Cross-media using images, audio, and video provides a
valuable technological approach for helping users avoid
becoming victims of false information. This paper achieved
strong performance across all three modalities, particularly
in detecting fake content, which is typically more
challenging. However, several limitations were encountered.
The datasets were sourced from publicly available
repositories, which may not be as current or diverse as
datasets from private domains. This limits real-world
representativeness. In addition, computational constraints
due to budget limitations restricted the scale and
complexity of the experiments. Future work can focus on
reducing domain shift between controlled, lab-based
datasets and realworld multimedia.  Enhancing
generalization in this way will help the model produce more
robust results and better align with real-time, real-world
data.
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