

Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Scopus

[Back](#)

GNN-based Skyline Query Processing for Large-Scale and Incomplete Graphs

[IIUM Engineering Journal](#) • Article • Open Access • 2026 • DOI: 10.31436/iiumej.v27i1.3717

[Adzman, Hasan Khair](#); [Hassan, Raini](#) ; [Handayani, Dini Oktarina Dwi](#)

Department of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia

[Show all information](#)

0

Citations

[View PDF](#)

[Full text](#)

[Export](#)

 [Save to list](#)

[Document](#)

[Impact](#)

[Cited by \(0\)](#)

[References \(13\)](#)

[Similar documents](#)

Abstract

Skyline queries are crucial in database management, selecting optimal points from multi-dimensional datasets based on dominance relationships. They are widely used in decision-making, recommendation systems, and data filtering. However, traditional skyline algorithms struggle with large volumes and missing data, leading to high computational costs and inefficiencies. This research proposes a hybrid approach that integrates the ISkyline dominance graph technique with Graph Neural Networks (GNNs) to improve skyline query performance under such conditions. The GNN component is utilized to predict skyline tuples in the presence of missing or incomplete data. Evaluation on both synthetic and real-world datasets demonstrates improved accuracy and efficiency compared with established methods such as ISkyline, SIDS, and OIS. This research demonstrates the potential to improve query processing efficiency and to support applications in e-commerce, finance, and smart data systems. Copyright (c) 2026 IIUM Press. This work is licensed

under a Creative Commons Attribution-NonCommercial 4.0 International License.

<https://creativecommons.org/licenses/by-nc/4.0/>

Author keywords

Graph Neural Networks (GNNs); Incomplete data; Machine learning; Pareto optimality; Skyline query processing

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Ministry of Higher Education, Malaysia See opportunities by MOHE		MOHE

Funding text

This research was supported by the Fundamental Research Grant Scheme (FRGS) under Reference Code FRGS/1/2021/ICT01/UIAM/02/2 (Project ID 19574) from the Ministry of Higher Education (MOHE), Malaysia.

Corresponding authors

Corresponding author	R. Hassan
----------------------	-----------

Affiliation	Department of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia
-------------	--

Email address	hrai@iium.edu.my
---------------	------------------