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ABSTRACT: Skyline queries are crucial in database management, selecting optimal points
from multi-dimensional datasets based on dominance relationships. They are widely used in
decision-making, recommendation systems, and data filtering. However, traditional skyline
algorithms struggle with large volumes and missing data, leading to high computational costs
and inefficiencies. This research proposes a hybrid approach that integrates the ISkyline
dominance graph technique with Graph Neural Networks (GNNs) to improve skyline query
performance under such conditions. The GNN component is utilized to predict skyline tuples
in the presence of missing or incomplete data. Evaluation on both synthetic and real-world
datasets demonstrates improved accuracy and efficiency compared with established methods
such as ISkyline, SIDS, and OIS. This research demonstrates the potential to improve query
processing efficiency and to support applications in e-commerce, finance, and smart data
systems.

ABSTRAK: Pertanyaan latar langit adalah penting dalam pengurusan pangkalan data, iaitu
dengan memilih titik optimum daripada set data berbilang dimensi berdasarkan hubungan
dominasi. Ia digunakan secara meluas dalam membuat keputusan, sistem pengesyoran, dan
penapisan data. Walau bagaimanapun, algoritma latar langit tradisional bergelut dengan
kuantiti data yang besar dan data menghilang, membawa kepada peningkatan kos pengiraan
dan ketidakcekapan. Kajian ini mencadangkan pendekatan hibrid yang mengintegrasi teknik
graf penguasaan ISkyline dengan Rangkaian Graf Neural (GNNs) bagi meningkatkan prestasi
pertanyaan latar langit berkeadaan sedemikian. Komponen GNN digunakan bagi meramalkan
tupel latar langit dengan kehadiran data menghilang atau tidak lengkap. Penilaian pada kedua-
dua set data sintetik dan dunia nyata menunjukkan peningkatan ketepatan dan kecekapan jika
dibandingkan dengan kaedah sedia ada seperti ISkyline, SIDS dan OIS. Kajian ini
menunjukkan potensi bagi mencipta pemprosesan pertanyaan yang lebih cekap, menyokong
aplikasi e-dagang, kewangan dan sistem data pintar.

KEY WORDS: Skyline query processing, Graph Neural Networks (GNNs), Incomplete
data, Pareto optimality, Machine learning.

1. INTRODUCTION

Skyline query processing is widely used in multi-criteria decision-making applications,
including route planning, product recommendation, and health diagnostics. However, existing
skyline methods face major challenges when applied to large and incomplete datasets,
conditions that are increasingly common in real-world scenarios.
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This research introduces a hybrid approach that combines Graph Neural Networks (GNNs)
with the ISkyline dominance graph technique to enhance skyline query performance. The
proposed method is designed to handle missing data and scale efficiently, thereby improving
the prediction of skyline tuples even in complex, incomplete environments. Experimental
results on both synthetic and real-world datasets demonstrate that this method outperforms
state-of-the-art techniques in accuracy and efficiency.

Skyline queries aim to retrieve data records that are not dominated by any others across
multiple dimensions, often referred to as Pareto-optimal points. While powerful, these queries
are computationally expensive, particularly when applied to large graph-based datasets or those
with incomplete attributes. Existing solutions, such as ISkyline and SIDS, aim to address
scalability, but they still struggle to predict under uncertainty or in the presence of data loss.

Recent advances in deep learning, particularly Graph Neural Networks (GNNs), offer
promising capabilities for learning from structured and incomplete data. By integrating GNNs
into the skyline processing workflow, the proposed method leverages graph-based feature
learning to support more robust and intelligent skyline selection.

Skyline queries are essential for identifying optimal data points from multi-dimensional
datasets based on dominance relationships. However, traditional skyline query algorithms face
significant limitations when processing large-scale, incomplete graph datasets. These methods
often encounter challenges related to scalability, computational overhead, and inefficiencies in
handling dynamic database environments [1], [2]. Furthermore, approaches such as Bucket and
ISkyline struggle to integrate missing data effectively, resulting in suboptimal accuracy and
high processing costs [3]. Current solutions lack a comprehensive framework that integrates
state-of-the-art advances in machine learning, particularly Graph Neural Networks (GNNs),
which have the potential to address these challenges by improving scalability, accuracy, and
adaptability [4].

Despite the promising capabilities of machine learning, including its ability to model
complex relationships in graph-structured data, its application in optimizing skyline queries
remains underexplored [5]. Existing research does not adequately leverage the dynamic
adaptability and efficiency of machine learning techniques, leaving a critical gap in addressing
the computational and data-handling shortcomings of traditional methods. This study aims to
bridge these gaps by introducing a novel framework that integrates Pareto optimality principles
with advanced machine learning methods, providing robust solutions for scalable and efficient
skyline computation in real-world settings.

Despite the potential of integrating Graph Neural Networks (GNNs) with skyline query
processing, several limitations must be acknowledged. First, GNN-based approaches are
resource-intensive, often resulting in high memory usage and longer query response times,
particularly when dominance graphs are dense. Second, these models face challenges in
interpretability, as it can be difficult to explain how dominance relationships are learned and
applied in classification. Third, the computational requirements may restrict scalability when
applied to large-scale, real-world datasets using modest hardware. These limitations frame the
motivation for this study and highlight the importance of balancing accuracy improvements
with efficiency and practical deployment considerations.

The research aims to accomplish three objectives. First, to develop a unified framework
that integrates Pareto optimality principles with advanced machine learning techniques,
particularly Graph Neural Networks (GNNs), to improve skyline query processing over large-
scale and attribute-incomplete graphs. Second, to evaluate the performance of the proposed
framework across real-world and synthetic datasets using comprehensive metrics, including
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accuracy (target > 99%), F1-score (target > 99%), AUC-ROC (target > 99%), query response
time, and memory usage, with a focus on ensuring scalability, efficiency, and adaptability in
dynamic environments. Third, to compare the effectiveness of the proposed framework against
traditional skyline algorithms and alternative machine learning models to identify the most
suitable method for skyline query processing on incomplete graph-structured data.

Additionally, this research contributes significantly to academia and real-world
applications by introducing a novel framework that integrates Pareto optimality with Graph
Neural Networks (GNNs) to enhance skyline query processing in large-scale, incomplete
datasets. Traditional methods often struggle with scalability and missing data, but this hybrid
approach leverages Pareto optimality to identify non-dominated points and GNNss to learn from
graph-structured, incomplete data. Their complementary strengths result in improved accuracy,
Fl-score, and AUC-ROC. The research also establishes standardized benchmarks using
synthetic and real datasets, evaluating performance using metrics such as accuracy, F1-score,
AUC-ROC, query response time, and memory usage. Practically, the solution 1s scalable and
adaptive, benefiting industries such as e-commerce, finance, and smart infrastructure by
enabling efficient, real-time decision-making even with incomplete data.

2. RELATED WORKS

Skyline queries identify optimal choices from a large dataset, such as selecting the top
products that are inexpensive, fast, and well-rated. GNNs are useful when product information
1s incomplete or when relationships are important.

Prior research on skyline query processing has produced several key algorithms. Borzsony
et al. [6] introduced the skyline operator to filter non-dominated points, inspiring methods like
ISkyline [2], which partitions incomplete data using bitmaps, and SIDS [7], which applies
sorted-based pruning. More recent work by Wang et al. [1] proposed Skyline Preference
Queries (SPQ) for large, incomplete datasets.

Despite these advances, most traditional methods struggle with scalability, particularly in
the presence of missing data. Few studies have explored machine learning approaches for
skyline computation. Recent developments in Graph Neural Networks (GNNs) show promise
for learning dominance structures directly from incomplete graphs [4], but their application in
skyline queries remains underexplored. This research builds upon these foundations, proposing
a hybrid GNN-based framework to address the identified gaps.

3. METHODOLOGY

3.1. Introduction

This section details the methodologies employed in this study, drawing on the design science
research cycle as outlined by Hevner [8]. The approach integrates three cycles to enhance the
identification and comprehension of design science research initiatives. Figure 1 illustrates the
adapted design science research framework based on the research of von Brocke et al. [9].
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Figure 1. Design Science Research Framework [19]

The Relevance Cycle connects the research project's contextual environment with design
science activities, ensuring that the needs and requirements for achieving the research
objectives are adequately identified. The Rigor Cycle links design science activities to a
knowledge base of scientific principles, expertise, and prior experiences that inform and guide
the research process [10]. At the core is the Design Cycle, which focuses on developing and
evaluating design artifacts and research processes. This cycle plays a pivotal role in describing
the research activities. Figure 2 illustrates the sequential flow of the research process within
this framework.

The research flow begins with a literature review that provides a foundational
understanding of traditional skyline algorithms, machine learning frameworks, and graph-
based methodologies. The process then advances to testing synthetic datasets as the initial step,
followed by real datasets. Both workflows incorporate data preprocessing, including tasks such
as data normalization, handling missing values, and splitting datasets into training, validation,
and test sets. For synthetic datasets, the research involves selecting traditional algorithms (e.g.,
ISkyline) and machine learning frameworks (e.g., Graph Neural Networks), and integrating
them to leverage the strengths of both approaches. The unified framework, along with
traditional algorithms, is tested extensively, and the performance of these methods is compared
using metrics such as processing time, memory usage, and accuracy. Results are analyzed to
evaluate the effectiveness of the unified approach. Similarly, the real datasets testing follows
the same workflow but includes an additional step of tuning the unified machine learning
framework to optimize its performance for real-world applications. This tuning involves
adjusting hyperparameters and evaluating alternative architectures (e.g., GraphSAGE). Finally,
the results from both workflows are consolidated, discussed comprehensively, and used to
propose a final algorithm that demonstrates superior performance in terms of scalability,
robustness, and adaptability. This expanded explanation ensures a clear understanding of how
each step in the methodology contributes to achieving the research objectives.
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Figure 2. Design Cycle

3.2. Proposed Method: GNN + ISkyline

This research proposes a hybrid method that integrates the traditional skyline query
algorithm ISkyline with a Graph Neural Network (GNN) to address attribute-level
incompleteness in graph-structured data. The goal is to identify dominant relationships among
data points and to improve skyline prediction in incomplete datasets using graph-based deep
learning.

The proposed methodology begins by computing the ground-truth skyline from
normalized and imputed data, then applies a modified ISkyline algorithm that handles missing
values by skipping comparisons with None entries. Dominance is determined through a custom
function that checks if one point is greater than or equal to another across all comparable
attributes and strictly greater in at least one. Each data point is then labeled as skyline or non-
skyline. To address class imbalance, skyline points are oversampled to match non-skyline
points, and a directed dominance graph is constructed in which nodes represent products and
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edges represent dominance relationships. This graph feeds into a 3-layer Graph Convolutional
Network (GCN), which uses normalized attributes as node features and binary skyline labels
for supervision. The model is trained using binary cross-entropy loss with class imbalance
adjustments and evaluated over 200 epochs on standard classification and efficiency metrics.
Designed to handle incomplete data, this hybrid approach combines ISkyline logic with GNN-
based pattern recognition to infer skyline membership effectively. Figure 3 below illustrates
the full pipeline of this hybrid methodology.
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I
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Algorithm
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I
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Figure 3. Proposed GNN + ISkyline Framework

By structuring the methodology in this modular fashion, the proposed approach provides
transparency in its design while allowing each step to be assessed and improved independently.
The integration of dominance relations with graph learning bridges classical skyline
computation and modern neural representation learning, yielding a more scalable and accurate
approach to handling incomplete multi-criteria datasets.

3.3. Dataset Preparation

This study evaluates the proposed framework using three real-world datasets: CoIL 2000
[11], NBA Stats [12], and MovieLens [13], selected for their diversity in domain, data volume,
and feature complexity. These datasets are commonly cited in the literature on multi-criteria
decision-making, incomplete data handling, and recommendation systems. To simulate real-
world scenarios involving incomplete information, 20% attribute-level incompleteness was
introduced into each dataset, either by randomly removing attributes or by building on pre-
existing missing values.

CoIL 2000, with 5,822 complete customer records and 86 attributes divided into
sociodemographic data (attributes 1-43) and product ownership (attributes 44-86). The NBA
Stats dataset comprises 18,381 player regular-season records across 17 features, spanning the
period 1946 to 2005. Features include standard demographics and performance statistics such
as field goals, free throws, assists, and points per game. The MovieLens dataset consists of
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1,000,209 ratings from 6,040 users for approximately 3,900 movies. Each user contributed at
least 20 ratings on a 5-point scale. Each row of the dataset records a user ID, movie ID, rating,
and timestamp.

Table 1 summarizes the key characteristics of each dataset and details the approach taken
to introduce and define incompleteness. The focus is on attribute-level incomplete graphs, in
which node features may be partially missing while maintaining structural relationships via
similarity-based edges.

Table 1. Summary of Real-World Datasets and Incompleteness Characteristics

Dataset No. of No. of Original Incompleteness Incomplete Graph
Nodes Columns Completeness Introduced Graph Type Representation
20% of attribute Nodes:
CoIL 2000 5.822 36 Fully values were fl\rmbute-level customers;
complete removed incompleteness Edges: feature
randomly similarity
Erilfli:;)?l‘;zdvalues Nodes:
NBA Stats 18,381 17 Partially to reach 20% of  Aribute-level - customers;
incomplete . incompleteness Edges: feature
total missing L=
similarity
values
20% of attribute Nodes:
MovieLens 1,000209 4 Fully values were fl\rmbute-level customers;
complete removed incompleteness Edges: feature
randomly similarity

To evaluate the robustness of the proposed framework under varying levels of attribute-
level incompleteness, four synthetic e-commerce datasets were generated, each with 5,000
product nodes and six attributes: 1) Product ID, 2) Price, 3) Rating, 4) Availability, 5) Shipping
Time, and 6) Category. Products in the same category are connected, forming 1,249,533 edges,
yielding an edge density of approximately 0.1 (9.998%) of the possible 12,497,500 node-to-
node connections. The three datasets introduce random incompleteness across all attributes at
10%, 50%, and 90%, enabling controlled robustness testing under progressively increasing
levels of missing data, as shown in Table 2.

Table 2. Summary of Synthetic E-Commerce Datasets and Incompleteness Characteristics

Max Possible Edge Density Attribute

Dataset No. of Nodes No. of Edges -
Edges Missingness
Synthetic-10% 5,000 1,249,533 12,497.500 ~0.1 (9.998%) 10%
Synthetic-50% 5,000 1,249,533 12,497.500 ~0.1(9.998%)  50%
Synthetic-90% 5,000 1,249,533 12,497,500 ~0.1(9.998%)  90%

These datasets provide a comprehensive testing environment for benchmarking the
robustness of skyline algorithms and the proposed framework. By varying the degree of
incompleteness while holding the graph topology constant, the research ensures that
performance differences across methods are directly attributable to their handling of missing
data. This controlled design is essential for deriving reliable conclusions about algorithmic
behavior in incomplete graph settings.

3.4. Baseline Models

To evaluate the effectiveness of the proposed machine learning-based framework, three
traditional skyline query algorithms, ISkyline, SIDS, and OIS, were selected as baselines due

33



ITUM Engineering Journal, Vol. 27, No. 1, 2026 Adzman et al.
https://doi.org/10.31436/iiumej.v27i1.3717

to their prominence in handling incomplete data and large-scale graphs. ISkyline uses bitmap
representations and shadow skylines to reduce dominance comparisons and manage missing
values effectively. SIDS employs a round-robin sorting mechanism to prune dominated tuples,
offering efficiency for static datasets with partial incompleteness. OIS, although not designed
for missing data, minimizes I/O overhead and performs well in large-scale environments. These
diverse, well-established methods provide a solid benchmark for assessing improvements in
robustness, scalability, and processing efficiency offered by the proposed learning-based
approach.

3.5. Evaluation and Benchmarking

To assess the performance of the proposed GNN + ISkyline framework and baseline
models in classifying skyline and non-skyline points, five key metrics are used: 1) accuracy, 2)
precision, 3) recall, 4) Fl-score, and 5) AUC-ROC. These metrics are crucial in imbalanced
datasets, where skyline points are often the minority. Eq. (1) shows that the accuracy measures
overall correctness:

TP+TN

Accuracy = ———
y TP+TN+FP+FN

(1)
where TP 1s true positives, TN is true negatives, FP is false positives, and FN is false negatives.

Eq. (2) shows that the precision or the ratio of correctly predicted skyline points to all
predicted skyline points, is given by:

TP
TP+FP

Eq. (3) shows that the recall reflects the model’s ability to detect actual skyline points:

Precision =

2)

TP
TP+FN

Recall =

3)
Eq. (4) shows that the F1-score balances precision and recall using the harmonic mean:

Precision X Recall .
F1l-score = 2 X 4)

Precision+Recall

AUC-ROC measures the model’s ability to distinguish between classes across thresholds,
with 1.0 indicating perfect classification and 0.5 representing random guessing. These metrics,
computed on the test set, provide a comprehensive evaluation of model performance,
particularly under varying degrees of data incompleteness.

Query response time is a critical performance metric for evaluating the efficiency of
skyline query processing methods, particularly when dealing with large and incomplete
datasets. In this study, query response time is defined as the total time from the initiation of
query processing to the generation of the final results.

Memory usage is an essential metric for evaluating the computational efficiency of skyline
query processing methods, particularly when applied to large-scale, incomplete datasets. It
provides insights into the resource intensity of each technique, which is particularly relevant
for deployment in memory-constrained environments. In this study, memory usage is measured
as the peak memory usage observed during the complete execution cycle of each method.

3.6. Setup and Configuration

All experiments were conducted locally on a MacBook Air with an Apple M2 chip (8-core
CPU, 8-core GPU, 16-core Neural Engine), 8 GB unified memory, and a 256 GB SSD running
macOS Sequoia. Despite modest hardware, the system efficiently supported the framework’s
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implementation in Python 3.11 using PyTorch (MPS backend), PyTorch Geometric, and Scikit-
learn, with data handled via Pandas and NumPy, and visualizations done using Matplotlib and
Seaborn. Model and batch optimizations enabled the smooth execution of experiments on both
synthetic and real-world datasets, ensuring reproducibility and consistent performance across
all tests.

4. RESULTS AND DISCUSSIONS

4.1. Experimental Setup and Dataset Description

To ensure the validity of the proposed GNN-ISkyline framework, experiments were
conducted using both real-world and synthetic datasets. A detailed description of these datasets
and the preprocessing steps is provided in Section 3. However, this section reiterates key
aspects relevant to the experimental pipeline.

The real-world datasets used in this study include ColIL 2000, NBA Stats, and MovieLens.
CoIL 2000 1s a customer dataset with 5,822 records and 86 attributes, containing
sociodemographic data and product ownership, originally completed before 20% of attribute
values were removed to simulate incompleteness. The NBA Stats dataset contains season-
based player statistics from 1946-2005, which are inherently partially incomplete and were
further modified by removing attribute values to achieve 20% incompleteness. The MovieLens
dataset contains over 1 million user ratings, initially complete, with 20% of attributes removed
to simulate missing data. All datasets were transformed into graphs where nodes represent
entities (e.g., customers, players, or users) and edges represent similarity based on features.

In addition to these real-world datasets, four synthetic e-commerce datasets were
generated, each containing 5,000 product nodes. These datasets were constructed with six
attributes: product ID, price, rating, availability, shipping time, and category. The three
synthetic datasets were generated with uniform incompleteness levels of 10%, 50%, and 90%,
respectively, by randomly removing attribute values across all columns.

4.2. Method Execution

The experiment involved several stages, beginning with data preprocessing, in which
missing values were imputed with zeros and attributes were normalized using MinMaxScaler.
Skyline labels were generated via dominance checks, and oversampling skyline points
balanced the dataset. A dominance graph was then constructed with directed edges from
dominating to dominated nodes, along with the feature and label tensors, and was fed into a 3-
layer GCN model. The model was trained on 80% of the data and tested on the remaining 20%,
with performance evaluated using accuracy, precision, recall, F1 score, and AUC-ROC,
alongside query response time and peak memory usage as efficiency metrics.

4.3. Comparison of Algorithms Using Synthetic Data with 10%, 50%, and 90%
Missingness

To provide a comprehensive evaluation, the results compare both standalone algorithms
(GNN, ISkyline, SIDS, OIS) and their hybrid counterparts (e.g., GNN + ISkyline). The
standalone models represent the baseline performance of traditional skyline methods or
machine learning methods applied independently. In contrast, the hybrid models demonstrate
that combining dominance-based algorithms with GNNs can enhance predictive accuracy. This
comparison highlights not only which method performs best but also the trade-offs between
classical efficiency and deep learning adaptability. The following results address the objectives
1, 2, and 3 stated in the Introduction.

35



ITUM Engineering Journal, Vol. 27, No. 1, 2026 Adzman et al.

https://doi.org/10.31436/iiumej.v27i1.3717

Table 3 presents a detailed evaluation of various algorithms under synthetic data with
increasing levels of missingness (10%, 50%, and 90%), revealing how well each model handles
incomplete information. Across all levels, GNN + SIDS consistently performs best on
predictive metrics, achieving near-perfect scores in accuracy, precision, recall, F1-score, and
AUC-ROC, even with 90% missing data, while maintaining modest memory usage and fast
response times. ISkyline performs surprisingly well in terms of accuracy and precision but
suffers from extremely low recall and F1-score, indicating poor sensitivity. Interestingly, GNN
+ ISkyline also maintains high performance but at the cost of very high memory usage and
response time, especially under 90% missingness. OIS remains robust with high F1-scores and
AUC-ROC, as missingness increases.

Table 3. Comparison of Algorithms Using Synthetic Data with 10%, 50%, and 90%

Missingness
10% Missingness
Query Peak
Algorithm Accuracy  Precision Recall Sl:;l_‘e II?(J)% Response Memory
Time (s) Usage (KB)
GNN 0.5020 0.5020 0.9861 0.6667 0.4842 139.2902 921.39
ISkyline 0.9698 1.0000 0.0195 0.0382 0.5097 0.1603 168.90
GNN + 0.9919 0.9841 1.0000 0.9920 0.9878 843.2566 477584.90
ISkyline
SIDS 0.9916 0.0455 1.0000 0.0870 0.9958 0.4705 2971.04
GNN +SIDS  0.9928 0.9860 1.0000 0.9929 0.9943 749.9065 478148.27
OIS 0.9728 0.0145 1.0000 0.0286 0.9864 0.7676 42448
GNN + OIS 0.0308 0.0308 1.0000 0.0598 0.0009 147.5776 105397.89
50% Missingness
Query Peak
Algorithm Accuracy  Precision Recall Sl:;l_‘e II?(J)% Response Memory
Time (s) Usage (KB)
GNN 0.4930 0.4930 1.0000 0.6604 0.4919 608.6592 912.55
ISkyline 0.9738 0.0000 0.0000 0.0000 0.5000 0.1257 168.68
GNN + 0.9931 0.9870 1.0000 0.9935 0.9956 1147.2394 1027135.04
ISkyline
SIDS 0.9996 0.9957 1.0000 0.9978 0.9998 7.3685 2976.11
GNN + SIDS ~ 0.9995 0.9990 1.0000 0.9995 1.0000 990.1274 1027707.01
OIS 0.9966 0.9647 1.0000 0.9820 0.9981 0.8260 426.06
GNN + OIS 0.0262 0.0262 1.0000 0.0511 0.0007 162.6048 381806.19
90% Missingness
Query Peak
Algorithm Accuracy  Precision Recall Sl:;l_‘e II?(J)% Response Memory
Time (s) Usage (KB)
GNN 0.5110 0.4364 0.0498 0.0894 0.5216 1041.0278 919.07
ISkyline 0.9906 1.0000 0.1296 0.2295 0.5648 0.0365 168.02
GNN 0.9980 0.9960 1.0000 0.9980 1.0000 4667.7921 2157517.52
ISkyline
SIDS 1.0000 1.0000 1.0000 1.0000 1.0000 105.9054 3000.64
GNN + SIDS ~ 0.9995 0.9990 1.0000 0.9995 1.0000 4543.4297 2157766.90
OIS 0.9936 0.9905 1.0000 0.9952 0.9904 6.8788 416.32
GNN + OIS 0.9504 0.1723 0.9444 0.2914 0.9757 191.4423 622770.62

In contrast, GNN + OIS, despite strong recall, underperforms substantially in accuracy,
precision, Fl-score, and AUC-ROC at lower missingness levels, recovering only somewhat at
90%. This behavior likely arises because OIS does not handle missing attributes well without
pre-filtering, and GNNs overfit to the sparse dominance structure, leading to overprediction.
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Additionally, the simple graph structure generated by OIS may lack sufficient complexity for
the GNN to extract meaningful patterns, causing ineffective learning.

By contrast, ISkyline constructs richer dominance relationships that provide the GNN with
more informative features, improving classification quality. However, this richness comes at a
high computational price, since storing and traversing large dominance graphs significantly
increases both memory usage and query response time. This trade-off indicates that GNN +
ISkyline is highly accurate but not resource-efficient. In contrast, GNN + OIS offers faster
runtime and lower memory use but struggles with predictive performance due to a weaker
graph representation.

4.4. Comparison of Algorithms Using ColIL 2000

The comparison between standalone and hybrid models is critical here, as it demonstrates
how incorporating GNN learning alters the behavior of traditional skyline methods. Standalone
algorithms such as ISkyline and OIS reflect their inherent design strengths and weaknesses,
whereas hybrids demonstrate the potential improvements, along with the additional costs, of
integrating neural network learning. This helps establish whether hybridization truly adds value
over efficient standalone baselines.

Table 4 presents a comparative analysis of multiple skyline query processing algorithms
using the ColL 2000 dataset. The results show that traditional methods like ISkyline and SIDS
perform poorly in terms of accuracy and F1-score, despite ISkyline achieving perfect precision
due to its overly conservative predictions. In contrast, GNN-based models, particularly when
combined with optimized skyline algorithms such as OIS, significantly outperform
alternatives. The GNN + OIS approach achieves near-perfect performance, with accuracy
(0.9698), Fl-score (0.9846), and AUC-ROC (0.9950), while maintaining reasonable memory
usage. Notably, the standalone OIS algorithm also delivers exceptional results (accuracy of
0.9796) with minimal query time (49.52s), suggesting its standalone strength. However,
integrating GNN with OIS marginally increases resource usage but yields the best overall
performance. This demonstrates that hybrid models that leverage GNNs with optimized skyline
strategies provide the most effective and scalable solution for skyline queries on incomplete
data.

Table 4. Comparison of Algorithms Using CoIL 2000

Query Peak
Algorithm Accuracy  Precision Recall F1-Score AUC- Response Memory
ROC Time (s) Usage

(KB)

GNN 0.4884 0.4881 0.8949 0.6316 0.5016 4.6432 336.96
ISkyline 0.0076 1.0000 0.0012 0.0024 0.5006 898.8737 16020.15
GNN. N 0.7333 0.5556 1.0000 0.7143 1.0000 229.6736 19673.39

ISkyline

SIDS 0.0064 0.0000 0.0000 0.0000 0.5000 1700.9073  70757.20
GSTETSJF 0.7870 0.7297 0.9123 0.8109 0.8642 724.7528 143958.74
OIS 0.9796 0.9569 1.0000 0.9780 0.9813 49.5192 9158.45
Gg}\;r 0.9698 1.0000 0.9696 0.9846 0.9950 338.3995 38407.19

OIS is inherently optimized for /O efficiency, which explains why OIS exhibits lower
query times and memory consumption than ISkyline. Although GNN + ISkyline achieves a
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strong AUC-ROC, its memory footprint is an order of magnitude higher, making it less
practical for real-time applications.

Figure 4 compares the accuracy of various algorithms and their combinations for skyline
query processing. Standalone traditional algorithms such as ISkyline and SIDS perform poorly,
with extremely low accuracies of 0.0076 and 0.0064, respectively. The GNN alone performs
better, achieving an accuracy of 0.4884, indicating its ability to model graph structures but
lacking in domain-specific optimization. However, combining GNNs with traditional methods
significantly boosts performance. GNN + ISkyline and GNN + SIDS achieve much higher
accuracies 0f 0.7333 and 0.7870, respectively. Notably, the OIS algorithm outperforms all with
an accuracy of 0.9796, and when paired with GNNs (GNN + OIS), it maintains a comparably
high performance at 0.9698. This indicates that hybrid models, particularly those that
incorporate OIS, are the most effective for accurate skyline query processing on complex or
incomplete datasets.
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Figure 4. Accuracy Comparison of Algorithms Using CoIL 2000

Figure 5 reveals significant disparities in the performance of different algorithms used for
skyline query processing. Traditional methods like ISkyline and SIDS show near-zero
effectiveness, with F1-scores of 0.0024 and 0.0000, respectively, indicating their poor balance
between precision and recall. The standalone GNN achieves a moderate F1-score of 0.6316,
suggesting reasonable performance in capturing skyline points despite data incompleteness.
Notably, combining GNN with classical methods significantly enhances performance: GNN +
ISkyline achieves 0.7143, and GNN + SIDS further improves to 0.8109. The top-performing
models are OIS and GNN + OIS, achieving outstanding F1-scores of 0.9780 and 0.9846,
respectively. This underscores that hybrid models, particularly those integrating GNNs with
OIS, offer superior capability in maintaining precision-recall tradeoffs, making them ideal for
accurate skyline detection in complex datasets.
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Figure 5. F1-Score Comparison of Algorithms Using ColIL 2000

Figure 6 provides a clear assessment of each algorithm's ability to distinguish between
skyline and non-skyline points. Traditional algorithms such as ISkyline and SIDS, along with
GNN, hover around a baseline performance of 0.50, indicating they perform no better than
random guessing. Interestingly, the combination of GNN + ISkyline achieves an AUC-ROC
of 1.0000, which may indicate overfitting or a specific synergy in that dataset. Meanwhile,
GNN + SIDS outperforms both methods individually, achieving 0.8642, underscoring the
benefits of combining deep learning with classic skyline methods. The OIS model again
demonstrates robustness with a high score of 0.9813, and the GNN + OIS hybrid achieves the
highest score of 0.9950, reinforcing that integrating GNNs with optimized skyline strategies
yields the most reliable and discriminative results across all metrics.
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Figure 6. AUC-ROC Comparison of Algorithms Using CoIL. 2000
Figure 7 reveals a striking contrast in performance among various algorithms. ISkyline

and SIDS perform extremely poorly, with near-zero values across most metrics, indicating that
they are ineffective standalone solutions. GNN performs moderately well with a Recall of 0.89
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and an Fl-score of 0.63, but struggles with accuracy and precision. Interestingly, GNN +
ISkyline achieves perfect precision and AUC-ROC, although its recall (0.56) and accuracy
(0.73) limit overall effectiveness. GNN + SIDS shows significant improvement across all
metrics, particularly with an Fl-score of 0.81. The standout performers are OIS and GNN +
OIS, both of which achieve near-perfect or perfect scores across every metric. Notably, GNN
+ OIS slightly outperforms OIS in AUC-ROC (0.99 vs. 0.98), making it the most robust and
balanced model overall, demonstrating the efficacy of hybridizing deep learning with
optimized skyline strategies.
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Figure 7. Comparison of Metrics for Algorithms Using CoIL 2000
Table 5. Comparison of Machine Learning Using CoIL 2000
Query Peak
Algorithm Accuracy Precision Recall Fl1- AUC- Response Mf'.mory
Score ROC Time (s) Usage
(KB)
GNN + OIS 0.9698 1.0000 0.9696 0.9846 0.9950 338.3995 38407.19
GAT + OIS 0.9775 1.0000 0.9774 0.9885 0.9949 351.3499 25964.56
XGg(;gst M 0.9777 0.9956 0.9819 0.9887 0.8689 97.8628 29138.93
RL + OIS 0.9957 0.9957 1.0000 0.9978 0.6622 875.2617 77173.20
OL + OIS 0.8699 0.9966 0.8721 0.9302 0.7229 106.1407 61728.71
GraphSAGE +
OIS 1.0000 1.0000 1.0000 1.0000 1.0000 402.7302 25888.41

Table 5 compares the performance of various machine learning algorithms integrated with
the OIS skyline optimization technique using the CoIL 2000 dataset. GraphSAGE + OIS
achieves perfect scores (1.0000) across all metrics, making it the top performer in terms of
predictive quality, albeit with moderate memory usage (25,888.41 KB) and a relatively high
response time (402.73s). RL + OIS also demonstrates near-perfect scores but exhibits the
highest memory usage (71,173.20 KB) and the longest response time (875.26s), limiting its
practicality. GAT + OIS and XGBoost + OIS achieve strong metric performance and improved
efficiency, with XGBoost + OIS having the shortest response time (97.86s) and low memory
usage. However, its AUC-ROC is significantly lower (0.8689). GNN + OIS maintains a good
balance between accuracy (0.9698), high AUC-ROC (0.9950), and moderate resource use.
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Conversely, OL + OIS, despite a decent precision (0.9966), lags in other metrics, particularly
recall (0.8721), and exhibits high memory consumption (61,728.71 KB). In summary,
GraphSAGE + OIS offers the best performance.

Figure 8 illustrates the comparative performance of various OIS-enhanced algorithms on
the ColL 2000 dataset across five key metrics: accuracy, precision, recall, F1-score, and AUC-
ROC. GraphSAGE + OIS achieves a perfect score of 1.00 across all metrics, demonstrating
strong classification performance. RL + OIS also achieves perfect scores for all metrics except
AUC-ROC, which drops significantly to 0.66, indicating a weaker ability to distinguish
between classes under varying thresholds. OL + OIS performs poorly compared to others,
especially in AUC-ROC (0.72) and recall (0.87), despite high precision. GNN + OIS, GAT +
OIS, and XGBoost + OIS demonstrate a strong balance of metrics, all hovering close to 0.99,
although XGBoost’s AUC-ROC lags slightly at 0.87. These results suggest that although
several models exhibit competitive predictive performance, GraphSAGE + OIS yields the most
robust and consistent performance across all tasks.
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Figure 8. Comparison of OIS Variants Across Metrics Using ColIL 2000

4.5. Comparison of Algorithms Using NBA Stats

In this section, GNN + SIDS and GAT + ISkyline are excluded from the algorithm
comparison because they consistently crashed during execution in the Jupyter Notebook. Table
6 presents a performance comparison of various algorithms applied to the NBA Stats dataset,
evaluating both classification metrics and computational efficiency. OIS emerges as the top
performer overall, achieving near-perfect accuracy (0.9973), perfect recall (1.0), and an
excellent AUC-ROC (0.9986), all while maintaining the fastest response time (1.86s) and
relatively low memory usage (4324 KB), making it the most balanced and efficient solution.
GNN + ISkyline also performs strongly in accuracy (0.9533) and F1-score (0.9515), but at the
cost of extremely high query response time (~17,680s) and massive memory usage (2.5 GB),
which limits its practicality. ISkyline and SIDS, though faster and lighter, exhibit near-zero
recall and F1 Scores, indicating that they miss nearly all relevant results. GNN alone also
underperforms with low recall (0.0753) and Fl-score (0.1314), despite modest memory
demands. Finally, GNN + OIS achieves perfect recall but low accuracy (0.1162) and F1-score
(0.2081), suggesting indiscriminate classification, and it also consumes over 1 GB of memory.
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Overall, OIS stands out as the best choice in terms of accuracy, efficiency, and real-world
applicability for the NBA Stats dataset.

Table 6. Comparison of Algorithms Using NBA Stats

Query Peak
- ;
Algorithm Accuracy Precision Recall F1-Score AUC Response Memory
’ ROC Time (s) Usage
(KB)
GNN 0.5072 0.5150 0.0753 0.1314 0.4936 2279.9321 576.44
ISkyline 0.8840 1.0000 0.0014 0.0028 0.5007 75.5164 1697.09
I(S}Eyl\lli;e 0.9533 0.9841 0.9210 0.9515 0.9905 17679.7926 2524215.45
SIDS 0.8838 0.0000 0.0000 0.0000 0.5000 820.3373 36999.28
OIS 0.9973 0.8106 1.0000 0.8954 0.9986 1.8601 4324.18
Glc\)llI\;+ 0.1162 0.1162 1.0000 0.2081 0.0159 1650.1123  1031888.89

The NBA dataset, with its high feature sparsity and temporal attributes, exacerbates the
inefficiency of ISkyline-based dominance graphs, necessitating excessive resources for GNN
+ ISkyline. OIS, however, remains efficient because its pruning strategies minimize
comparisons, yielding faster, lighter computations while maintaining near-perfect accuracy.
This contrast emphasizes the scalability advantage of OIS over ISkyline in real-world, high-
volume datasets.
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Figure 9. Comparison of Metrics for Algorithms Using NBA Stats

Figure 9 provides a comprehensive side-by-side comparison of multiple performance
metrics, accuracy, precision, recall, F1-score, and AUC-ROC, for different algorithms applied
to the NBA Stats dataset. OIS is the most balanced and effective model overall, achieving near-
perfect or perfect scores across all metrics, including accuracy (1.00), recall (1.00), and AUC-
ROC (1.00), making it the top choice for both accuracy and class separation. GNN + ISkyline
also performs exceptionally, with high precision (0.9841), strong recall (0.9210), and a very
high AUC-ROC (0.9905), showcasing its strong generalization and consistency. On the other
hand, ISkyline and SIDS exhibit a complete collapse in recall and Fl-score (both =0.00),
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despite ISkyline’s perfect precision, implying either extreme overfitting or a failure to detect
positive cases. GNN performs modestly, with mediocre values across all metrics. In contrast,
GNN + OIS achieves high recall (1.00) but very poor performance on all other metrics,
particularly accuracy (0.12) and AUC-ROC (0.02), indicating that it indiscriminately labels all
points as the skyline. The chart emphasizes the robustness and efficiency of OIS, followed by
GNN + ISkyline, while also highlighting the critical weaknesses in standalone traditional
models and poorly integrated hybrids.

Table 7 compares various ISkyline-integrated machine learning models on the NBA Stats
dataset, evaluating their performance across performance metrics and computational
efficiency. GraphSAGE + ISkyline dominates with a perfect score of 1.000 in all performance
metrics, accuracy, precision, recall, Fl-score, and AUC-ROC, indicating flawless
classification. However, this comes at the cost of very high query response time (~8943s) and
massive memory usage (~2.5 GB), making it computationally intensive. XGBoost + ISkyline
offers the best trade-off, achieving excellent classification results, with accuracy (0.9843), F1-
score (0.9844), and AUC-ROC (0.9979), while being far more efficient in time (~482s) and
memory (~126 MB). Similarly, RL + ISkyline and OL + ISkyline perform well with decent
F1-scores (0.8985 and 0.8347, respectively) and fast response times (<470s), especially OL +
ISkyline, which 1s the most memory-efficient (19.5 MB). In contrast, GNN + ISkyline, while
accurate (0.9533), exhibits the longest query time (~17680s) and highest memory consumption
(~2.5 GB), thereby limiting its practicality. Overall, GraphSAGE + ISkyline is ideal for
scenarios requiring perfect accuracy regardless of resource constraints, whereas XGBoost +
ISkyline strikes the best balance between performance and efficiency.

Table 7. Comparison of Machine Learning Using NBA Stats

F1 ATC Query Peak
Algorithm Accuracy Precision Recall Scm_'e RO C_ Response Memory
Time (5) Usage (KB)
GNN + 0.9533 0.9841 0.9210 0.9515 09905 17679.7926  2524215.45
ISkyline
ng;ﬁ;:r 0.9843 0.9699 0.9994 0.9844  0.9979 481.6498 126111.93
RL + ISkyline 0.9001 0.9072 0.8901 0.8985 0.9663 462.2957 40069.25
OL +ISkyline ~ 0.8209 0.7709 0.9099 0.8347 0.9292 426.5436 19517.34
GraphSAGE - 449 1.0000  1.0000 1.0000 1.0000 8942.8623  2524046.19
+ ISkyline

4.6. Comparison of Algorithms Using MovieLens

When testing the proposed GNN + ISkyline framework on the MovieLens dataset across
different dataset sizes (1M, 100k, 30k, 20k, and 10k records), several computational challenges
were observed. Processing the 1M, 100k, and even 10k record subsets still required substantial
time, indicating that the method remains computationally intensive even at smaller scales.
More critically, attempts to run the model on the 30k and 20k subsets led to kernel crashes.

The following results were evaluated on the MovieLens dataset using Sk records, which
was sufficient for successful execution. However, the GAT + ISkyline model was excluded
from this test because it caused a kernel crash during execution.

As shown in Table 8, GNN + ISkyline achieves the highest overall performance, achieving
perfect scores of 1.0000 for accuracy, precision, recall, F1-score, and AUC-ROC. However,
this comes with a relatively high query response time (2878.10s) and peak memory usage
(1927721.87 KB). ISkyline alone also performs very well in accuracy (0.9978) and precision
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(1.0000), but its recall (0.2778) and F1-score (0.4348) are notably lower, suggesting limited
effectiveness in capturing positive cases. OIS achieves excellent accuracy (0.9993) and
reasonable AUC-ROC (0.7497), with the benefit of speedy query response time (0.0562s) and
low peak memory usage (723.07 KB). GNN + SIDS demonstrates balanced performance, with
a high AUC-ROC (0.9051) and relatively efficient resource utilization. Meanwhile, GNN and
SIDS alone perform poorly, with zero recall and Fl-score values. GNN + OIS struggles
significantly, with extremely low accuracy (0.0031) and AUC-ROC (0.0005), despite moderate
memory usage.

Table 8. Comparison of Algorithms Using MovieLens

F1 AUC Query Peak
Algorithm  Accuracy Precision Recall Scol_'e RO C_ Response Memory
' Time (5) Usage (KB)
GNN 0.5171 0.0000 0.0000  0.0000  0.5243 590.1351 375.99
ISkyline 0.9978 1.0000 0.2778  0.4348  0.6389 0.8235 223.54
GNN. N 1.0000 1.0000 1.0000  1.0000 1.0000  2878.0988 1927721.87
ISkyline
SIDS 0.9969 0.0000 0.0000  0.0000  0.5000 69.2292 3450.52
PRI 08187 08302 08010 08154 09051  2.1972 2283.49
OIS 0.9993 0.5000 0.7500  0.6000  0.7497 0.0562 723.07
GNN + OIS 0.0031 0.0031 1.0000  0.0061 0.0005 212.3288 344711.13

MovieLens data, being user-item interaction-based, produces extremely dense graphs
under ISkyline. This enables GNN + ISkyline to learn dominance structures effectively,
thereby achieving perfect accuracy. However, the density results in prohibitive memory
consumption (approximately 2 GB) and long runtimes. In contrast, GNN + OIS collapses on
MovieLens because OIS pruning removes too much relational information, leaving the GNN
with insufficient features to generalize.
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Figure 10. Comparison of Metrics for Algorithms Using Moviel.ens

Figure 10 highlights GNN + ISkyline as the top-performing approach, achieving perfect
scores (1.00) across all five metrics, accuracy, precision, recall, Fl1-score, and AUC-ROC,
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demonstrating outstanding overall performance. GNN + SIDS also performs strongly,
achieving high scores across all metrics (0.80-0.91), although slightly lower than GNN +
ISkyline. OIS shows good accuracy and recall but lower precision (0.50) and F1-score (0.60),
and moderate AUC-ROC (~0.75). In contrast, ISkyline alone achieves excellent accuracy and
precision but falls short on recall (0.28) and Fl-score (0.43), indicating an imbalance. GNN
and SIDS individually struggle, with most metrics 0 except for moderate accuracy (~0.52) and
AUC-ROC (~0.52) for GNN. GNN + OIS notably underperforms, with recall the only strong
metric (1.00), whereas all other metrics are nearly 0, indicating extremely poor general
classification performance. Overall, integrating GNN with ISkyline is the most effective
combination, followed by GNN + SIDS.

Table 9 presents a comparison of machine learning models combined with ISkyline on the
MovieLens dataset, showing that GNN + ISkyline and GraphSAGE + ISkyline both achieved
perfect scores (1.0000) across all evaluation metrics, accuracy, precision, recall, F1-score, and
AUC-ROC, demonstrating flawless performance. XGBoost + ISkyline also performed
exceptionally, achieving near-perfect metrics with accuracy (0.9996), precision (0.9991), recall
(1.0000), F1-score (0.9996), and AUC-ROC (1.0000), while maintaining a low query response
time and modest memory usage compared to GNN-based methods. OL + ISkyline showed the
lowest performance among the listed models but still maintained decent accuracy (0.9424) and
AUC-ROC (0.9842). In terms of resource efficiency, OL + ISkyline was the most lightweight,
with the lowest memory usage, whereas the GNN and GraphSAGE variants required
significantly more memory. Overall, all models exhibit excellent performance, but the GNN +
ISkyline and GraphSAGE + ISkyline combinations stand out for achieving perfect
classification at the cost of substantially higher memory and processing demands.

Table 9. Comparison of Machine Learning Using MovieLens

F1 AUC Query Peak
Algorithm  Accuracy Precision Recall Scm_'e ROC_ Response Memory
Time (s) Usage (KB)
GNN +
. 1.0000 10000 1.0000 1.0000 1.0000 2878.0988 1927721.87
ISkyline
XGBoost+ ) 5996 09991  1.0000 0.9996 1.0000  98.6301 2527.05
ISkyline
+
RL - 0.9832 09674  1.0000 0.9834 09931  96.9954  51641.99
ISkyline
OL+ 0.9424 09523 09309 09415 09842  93.6479 2007.34
ISkyline
GraphSAGE 14 10000 1.0000 1.0000 1.0000 1728.0954 1924217.91
+ ISkyline

5. CONCLUSION

This research on GNN-based skyline query processing for large-scale and incomplete
graphs showed that integrating Graph Neural Networks (GNNs) with Pareto optimality
principles i1mproves skyline query performance by enhancing scalability, reducing
computational overhead, and effectively handling incomplete data. The proposed GNN-based
framework outperformed traditional algorithms such as ISkyline, SIDS, and OIS in accuracy,
Fl-score, and AUC-ROC, and demonstrated adaptability to dynamic environments with real-
time updates. Benchmarks using metrics such as accuracy, Fl-score, AUC-ROC, query
response time, and memory usage validated its effectiveness across synthetic and real-world
datasets.
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Furthermore, this research meaningfully supports Sustainable Development Goal 9
(Industry, Innovation, and Infrastructure) by demonstrating scalable, adaptive techniques for
data-intensive systems. Handling incomplete and large-scale data robustly ensures the
resilience and scalability of digital infrastructures, essential for future smart cities, industrial
automation, and sustainable development platforms. By addressing both scalability and data
incompleteness, the proposed framework directly contributes to the development of more
intelligent, responsive, and reliable infrastructure systems.

Computational limitations constrained this research due to the use of a consumer-grade
MacBook Air (M2, 8GB RAM). Limited memory and processing capacity occasionally caused
kernel crashes, especially during large-scale graph construction and GNN training on bigger
datasets (e.g., NBA Stats, Moviel.ens). As a result, some hybrid models could not be
thoroughly tested with vast datasets. In future work, experiments should be conducted using
more powerful computing resources, such as high-memory GPUs or cloud-based platforms
(e.g., AWS EC2 P4 instances, Google Cloud TPU Pods). This would enable evaluation of
larger graphs, deeper GNN models, and hyperparameter tuning at a larger scale, thereby further
validating the proposed framework under realistic, production-level conditions.

Despite the promising results of machine learning models in skyline query processing,
several practical limitations remain. First, GNN-based methods exhibit high memory usage,
especially when processing large or dense graphs, which may hinder scalability in resource-
constrained environments. Second, these deep learning models often suffer from
interpretability challenges, making 1t difficult to understand how specific dominance
relationships are learned or how skyline classifications are made, an issue that can limit their
adoption in critical decision-making systems where transparency is essential. Third, while
synthetic datasets enable controlled experimentation, they may not fully capture the complexity
and noise of real-world data, potentially limiting the generalizability of the models trained on
them. These limitations highlight the need for further research to optimize resource use,
enhance model explainability, and validate findings on more diverse, real-world datasets.

Future research could extend this work in several directions. First, scalability can be
improved by investigating lightweight or compressed GNN architectures (e.g., pruning,
quantization, or knowledge distillation) to reduce memory and runtime costs without
sacrificing accuracy. Second, explainability should be prioritized by integrating interpretable
GNN models or post hoc explanation methods, thereby enabling users to understand dominance
relationships in skyline predictions better. Third, a broader evaluation on diverse real-world
datasets beyond CoIL 2000, NBA Stats, and MovieLens is essential to test generalizability
across domains such as healthcare, transportation, and financial risk analysis. Finally, exploring
distributed or parallel skyline computation frameworks using cloud-based platforms could
further support deployment in large-scale, real-time environments. Together, these directions
will help bridge the gap between theoretical contributions and practical deployment of GNN-
based skyline query processing.
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