

Journal of Islamic Technology (JITech)

Jurnal Teknologi Islam (JITech)

Robotics and the Islamic Worldview: A Tawhidic Epistemology Framework for Ethical and Human-Centered Technological Innovation

Amir A. Shafie^{1,*}, Saiful A. Che Cob²

¹Department of Mechatronics Engineering, Kulliyyah of Engineering (KOE), International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia

²Fakulti Seni Lukis dan Seni Reka (FSSR), Universiti Teknologi MARA (UiTM), Puncak Alam, Malaysia

* Corresponding author: aashafie@iium.edu.my

Abstract—This paper explores the integration of robotics within the Islamic worldview, proposing a Tawhidic epistemology as a foundational framework for ethical and human-centered technological innovation. Modern robotics influences nearly every sector—from manufacturing and medicine to education and environmental stewardship—yet its rapid evolution generates profound moral and social challenges. Drawing upon the principles of Tawhid (Oneness of God), Khilafah (stewardship), and Maqasid al-Shariah (objectives of Islamic law), this paper examines how Islamic epistemology unifies scientific progress with divine purpose. Through philosophical analysis and illustrative examples, it argues that robotics, when guided by Tawhidic consciousness, becomes an act of stewardship (amanah) rather than domination. The paper concludes that Islamic ethics can provide a comprehensive moral compass for robotics governance—one grounded in justice ('adl), compassion (rahmah), and sustainability (istiqamah).

Keywords—*Islamic worldview, Tawhidic epistemology, robot ethics, Maqasid al-Shariah, stewardship, human-centered technology*

Abstrak – Makalah ini membincangkan integrasi teknologi robotik dalam kerangka pandangan alam Islam dengan menonjolkan epistemologi tauhidik sebagai asas kepada inovasi teknologi yang beretika dan berpusatkan insan. Perkembangan pesat robotik masa kini meliputi pelbagai sektor seperti pembuatan, perubatan, pendidikan dan pengurusan alam sekitar, namun turut menimbulkan cabaran moral dan sosial yang mendalam. Berasaskan prinsip Tauhid (KeEsaan Allah), Khilafah (Kepemimpinan dan amanah manusia di bumi), serta Maqasid al-Shariah (Objektif Syariah), makalah ini meneliti bagaimana epistemologi Islam menyatukan kemajuan sains dengan tujuan ketuhanan. Melalui analisis falsafah dan contoh-contoh aplikasi semasa, penulis berhujah bahawa pembangunan robotik yang berteraskan kesedaran tauhidik menjadikan inovasi sebagai satu bentuk amanah (amanah), bukannya dominasi terhadap ciptaan. Dapatkan utama menunjukkan bahawa etika Islam mampu menyediakan kompas moral yang menyeluruh bagi tadbir urus teknologi robotik berdasarkan prinsip keadilan ('adl), kasih sayang (rahmah), dan kelestarian (istidamah).

Kata Kunci: *pandangan alam Islam, epistemologi tauhidik, etika robotik, Maqasid al-Shariah, khilafah, inovasi beretika berpusatkan insan*

1. Introduction: Robotics in the Modern World and Islamic Thought

The twenty-first century marks an unprecedented expansion of robotics and artificial intelligence (AI). Robots assist surgeons, harvest crops, deliver packages, and even interact socially. The International Federation of Robotics reports that more than 3.5 million industrial robots are operational globally as of 2024, with service robots expanding fastest in healthcare and logistics sectors (IFR, 2024). Such rapid growth raises ethical concerns—autonomy, job displacement, privacy, and the militarization of AI systems—that challenge traditional moral frameworks. A parallel discourse is articulated by Klaus Schwab, in his seminal work 'The Fourth Industrial Revolution' (2016), wherein he

introduces the notion of the “unprecedented paradigm”, as a representation of the transformative and disruptive character of the technological upheavals of the twenty-first century, an era that is redefining the very fabric of human norms. “The tempest of the new dawn” as it were, stands in stark contrast to the preceding three industrial revolutions, each propelled respectively by mechanization, electrification, and digitalization. The fourth, however, blurs the once-distinct boundaries between the physical, digital, and biological realms. Schwab intimates that artificial intelligence (AI), the ascendancy of robotics, the vigor of contemporary biotechnology, and the growing dependence on the Internet of Things (IoT), are not mere instruments of progress; rather, they are forces that fundamentally reconstitute human identity, labor, and ethics. He posits that AI and automation constitute a revolution in production structures and systems of governance, while simultaneously engendering formidable challenges to the domains of employment, privacy, and moral agency. For Schwab, this paradigm is “unprecedented”, precisely because it evolves at an exponential rather than linear pace, affecting every sector of society and altering the meaning and value of being human in a technologically mediated world.

Moreover, Schwab cautions that the benefits of this revolution hinge upon how humanity governs the integration between human consciousness and mechanistic intelligence. He calls for a new mode of “human-centered” innovation, guided by ethical discernment and collective responsibility. Absent such a moral framework, the rapid proliferation of AI and robotics, risks exacerbating inequality and diminishing humanity’s dominion over nature itself. Thus, Schwab envisions a future in which technology must be governed not solely by the calculus of efficiency, but by the higher virtues of empathy, sustainability, and inclusivity. His perspective invites policymakers, educators, and industries alike to engage in a profound reflection on the intersection between technology and the human image, to ensuring that the Fourth Industrial Revolution emerges as a catalyst for the flourishing of humankind, rather than a domination by ‘soulless’ algorithmic systems.

Hence, Islam provides a holistic worldview that unites the material and spiritual dimensions of life. Its guiding principles—Tawhid, Khilafah, and Maqasid al-Shariah—offer a balanced approach to technology development, ensuring that innovation serves humanity without violating divine order. As the Qur'an declares:

“Indeed, Allah commands justice, the doing of good, and liberality to kith and kin, and He forbids all shameful deeds, injustice, and rebellion.” (Qur'an 16:90, Sahih International)

From this standpoint, robotics is not morally neutral but value-laden; it must contribute to social harmony (mizan) and collective welfare (maslahah ‘ammah). Examples of ethically aligned robotics include surgical robots that preserve life (hifz al-nafs), educational robots that enhance intellect (hifz al-‘aql), and service robots that support pilgrims during Hajj, demonstrating technology in service of faith.

The central question guiding this paper is “How can Tawhidic epistemology provide an ethical foundation for robotics consistent with the Islamic worldview?”

2. Islamic Epistemology and the Nature of Technology

2.1. Tawhidic Vision of Knowledge

Tawhidic epistemology, as articulated by scholars such as Bakar (2012) and Al-Attas (1980), recognizes the unity of all knowledge under the sovereignty of Allah (al-‘Alīm). Revelation and reason are not opposites but complementary means of uncovering truth. Every inquiry into creation is ultimately an act of remembering the Creator. Thus, scientific investigation and technological invention acquire spiritual meaning when pursued with God-consciousness (taqwa).

In robotics, this implies that creating autonomous systems must reflect humility before divine wisdom rather than mimicry of divine creation. The Tawhidic scientist or engineer perceives technology as a trust (amanah) to enhance life, guided by the ethical purpose of serving humanity. This vision resonates with profound philosophical gravity, especially when Al-Attas (2014) raised his solemn summons to the Muslim ummah through his monumental treatise. In his words:

“Every path of development and progress that humankind must traverse is, in essence, a spiritual evolution, not a corporeal one. Yet, in affirming this truth, we do not negate the reality of change and transformation that unfolds around us, within the material world and the cultural sphere, in tandem with the unfolding growth of knowledge born of our own intellect.” (Al-Attas, 2014).

2.2. Unity, Order, and Hierarchy of Knowledge

According to Bakar (2012), Tawhidic epistemology affirms the unity, order, and hierarchy of knowledge. Revelation occupies the highest level as divine truth, while rational and empirical sciences function within that hierarchy to support human welfare. Fragmentation occurs when scientific knowledge is detached from metaphysical meaning.

In modern robotics, the dominance of reductionist and utilitarian paradigms often results in ethical vacuums—machines designed purely for efficiency, disregarding justice or compassion. The Tawhidic approach restores harmony between moral and technical reasoning, ensuring that the hierarchy of values informs the hierarchy of systems.

2.3. Restoring Tawhidic Thinking in Technological Culture

The secularization of science has led to epistemic disconnection between technological power and moral purpose. Islam calls for the restoration of hikmah (wisdom) in technological pursuits. The Qur'an commands in Surah Al-Baqarah (33):

“And He taught Adam the names—all of them.” (Qur'an 2:33)

This verse signifies divine sanction for knowledge acquisition, but it also reminds humanity that knowledge carries responsibility. Embedding Tawhidic thinking in robotics education especially in Muslim institutions like IIUM and UiTM ensures that engineers view their work as part of a spiritual continuum linking intellect, ethics, and worship.

3. Foundations of the Islamic Worldview

3.1. Tawhid (Oneness of God)

Tawhid affirms that all existence originates from Allah and reflects His Oneness. This principle establishes an ontological unity between the natural and moral orders. Human creativity in robotics is therefore a manifestation of divine trust, not rivalry. Technology must maintain balance (mizan) and avoid corruption. This is mentioned in Surah Al-A'raf, (56):

“And do not cause corruption upon the earth after its reformation, and invoke Him in fear and aspiration. Indeed, the mercy of Allah is near to the doers of good.” (Qur'an 7:56)

Robotic systems designed for sustainable agriculture or environmental monitoring embody this Tawhidic principle by promoting ecological equilibrium rather than exploitation.

3.2. Khilafah (Stewardship)

Humans are appointed as khalifah fi al-ard—vicegerents of God on Earth (Qur'an 2:30). The concept of Khilafah translates stewardship into ethical design. Robotics becomes a means of fulfilling this responsibility: disaster-response drones rescuing victims, medical robots preserving life, or recycling robots reducing waste. Stewardship also entails social justice. In Islamic economics, automation must not deepen inequality; it should redistribute opportunities through creativity and education. Engineers, as modern khalifahs, are morally bound to ensure that automation enhances dignity rather than diminishes it.

3.3. Maqasid al-Shariah (Objectives of Islamic Law)

The *Maqasid al-Shariah* provides a comprehensive ethical framework for evaluating technological outcomes. Robotics aligns with these objectives when it safeguards as summarized in Table 1. Each dimension ensures that robotics serves human welfare while maintaining divine justice.

Table 1: Summary of Maqasid al-Shariah with example of Robotics Application

Objective	Description	Robotics Application
Hifz al-Din	Preservation of faith	Robots aiding worship, Qur'an learning tools, mosque maintenance systems
Hifz al-Nafs	Preservation of life	Surgical robots, rescue drones, medical diagnostics
Hifz al-'Aql	Preservation of intellect	Educational robotics fostering STEM literacy
Hifz al-Nasl	Preservation of lineage	Ethical family-care technologies
Hifz al-Mal	Preservation of wealth	Automation that promotes fair productivity and avoids waste

4. Ethics and Morality in Robotics

4.1. Islamic Ethical Foundations

Ethics (akhlaq) in Islam is inseparable from belief (iman). The core principles—‘Adl (justice), Ihsan (excellence), and Rahmah (compassion)—govern all human actions. Technology must uphold these virtues. The Prophet

Muhammad (peace be upon him) said in book 21 hadith 1955: “Verily Allah has prescribed excellence in all things.” (Sahih Muslim 1955).

In robotics, ‘Adl requires fairness in algorithms and equitable access; Ihsan demands precision and care in design; Rahmah calls for technology that alleviates suffering, such as assistive robots for the elderly or disabled.

4.2. Algorithmic Justice and Transparency

Bias in data or algorithms can perpetuate injustice. From an Islamic perspective, such bias violates ‘Adl. Designers must ensure transparency and accountability. An ethical review based on Maqasid al-Shariah should accompany AI system deployment to protect individuals from discrimination and harm.

4.3. Privacy and Surveillance

The Qur’ān warns against intrusion in Surah Al-Hujurat (12):

“And do not spy or backbite one another.” (Qur’ān 49:12).

Robotics used in surveillance or data collection must respect personal dignity. Islamic ethics insists on informed consent and proportionality—protecting safety without violating privacy.

4.4. Human–Robot Interaction and Dignity

Human dignity (karamah insaniyyah) is sacred (Qur’ān 17:70). Robots should augment—not replace—human empathy and creativity. Educational and caregiving robots must reinforce relational and emotional values rather than depersonalize interaction.

4.5. Weaponization and Conflict

Islamic ethics restricts harm even during warfare. The Prophet in book 12, hadith 2614 of Sunan Abi Dawud forbade the killing of non-combatants and the destruction of nature (Abu Dawud 2614). Lethal autonomous weapons contradict Maqasid al-Shariah by threatening life (hifz al-nafs) and peace. Robotics research should prioritize humanitarian applications—mine clearance, disaster relief, and peacekeeping—consistent with Rahmah.

5. Knowledge, Innovation, and Ijtihad

5.1. Knowledge as Worship

In Islam, knowledge (‘ilm) is sacred. The Qur’ān asks in Surah Az Zumar (9):

“Say, are those who know equal to those who do not know?” (Qur’ān 39:9)

Pursuing robotics and engineering with sincere intention (niyyah salihah) is therefore an act of worship (‘ibadah). Knowledge divorced from ethics leads to arrogance; integrated with Tawhid, it yields humility and service.

5.2. Ijtihad and Technological Ethics

Ijtihad—Independent reasoning—enables scholars to apply Islamic principles to new contexts. Contemporary fiqh of technology examines issues like robot autonomy, data ownership, and human accountability. Through Ijtihad, Shariah

can evolve dynamically to guide ethical innovation. Interdisciplinary collaboration between ‘ulama and engineers is crucial to formulate fatwas and standards for robotics use in finance, medicine, and education.

5.3. Historical Continuity of Innovation

Muslim civilization’s legacy demonstrates that technological creativity coexisted with spirituality. Al-Jazari’s 13th-century automata, Ibn Sina’s mechanical designs, and Al-Kindī’s optics reflect integration of empirical inquiry with hikmah (wisdom). Modern Muslim engineers can revive this ethos by designing robots that embody both functional excellence and moral consciousness.

6. Responsible Use of Knowledge and Innovation

The responsible use of knowledge (isti‘māl al-‘ilm bi-mas’ūliyyah) forms the moral bedrock of Islamic epistemology. The Qur’ān cautions in Surah Al-Isra 36:

“And do not pursue that of which you have no knowledge. Indeed, the hearing, the sight, and the heart—about all those [one] will be questioned.” (Qur’ān 17:36)

This verse affirms that scientific inquiry entails accountability. Robotics must therefore be developed and applied within ethical constraints that ensure benefit (maṣlahah) and prevent harm (mafsadah).

To operationalize this principle, Muslim institutions should establish an Islamic Technology Governance Model (ITGM) comprising:

1. Ethical Impact Assessments – Each robotic system evaluated against Maqāṣid al-Sharī‘ah outcomes.
2. Sharī‘ah-Compliant Certification – Auditing processes similar to halal or Islamic finance standards, certifying that the technology upholds ‘adl and rahmah.
3. Educational Integration – Embedding ethics and Tawhidic philosophy into engineering curricula to cultivate spiritually grounded innovators.
4. Public Awareness Mechanisms – Encouraging societal discourse on robotics, ensuring transparency and trust.

Such frameworks embody the Qur’ānic call to balance faith and reason, transforming robotics into a discipline of moral stewardship rather than technical domination.

7. Case Studies in Islamic Robotics Applications

7.1. Healthcare Robotics in Muslim Societies

Saudi Arabia and Malaysia have pioneered robotic surgery programs and rehabilitation systems that enhance clinical precision. These technologies realize Hifz al-Nafs (protection of life) by minimizing risk and accelerating recovery. When used under ethical supervision, they represent ‘ibādah through service—fulfilling the Prophet’s saying: “The most beloved people to Allah are those who are most beneficial to people.” (Ibn Ḥibbān 337).

7.2. Robotics in Hajj and Mosque Maintenance

Autonomous cleaning and service robots at al-Masjid al-Harām and al-Masjid an-Nabawī exemplify how technology can assist acts of worship. These systems maintain hygiene, guide pilgrims, and monitor safety—practical manifestations of *Hifz al-Dīn* (preservation of religion) and *Iḥsān* (excellence). They symbolize how faith and innovation coexist harmoniously within a Tawhidic framework.

7.3. Agricultural and Environmental Robotics

In Malaysia, research on palm-oil-harvest robots and precision-irrigation drones reflects sustainable stewardship (*khilāfah*). By reducing chemical waste and optimizing resources, such technologies uphold *mīzān* (balance) and *isti‘dāmah* (sustainability). They transform the Qur’anic directive—“Eat of the good things which We have provided for you and do not commit abuse on the earth, spreading corruption.” (Qur’ān 2:60) into applied environmental ethics.

8. Challenges and Future Prospects

Despite its promise, robotics faces multidimensional challenges requiring Islamic ethical reflection.

8.1. Autonomy and Accountability

As robots gain decision-making capability, moral accountability becomes blurred. Islamic jurisprudence holds humans responsible for intentional and consequential acts; thus designers, operators, and policymakers share liability for robotic harm.

8.2. Employment and Social Equity

Automation can widen economic disparities. The Qur’ān reminds in Surah Az-Zukhruf (43):

“And We raised some of them above others in degrees [of rank] that they may make use of one another for service. But the mercy of your Lord is better than whatever they accumulate.” (Qur’ān 43:32)

Islamic economics mandates redistribution, *zakāh*, and vocational retraining to mitigate technological unemployment.

8.3. Cultural Perception and Technological Colonialism

Global robotics discourse is often dominated by secular or utilitarian paradigms. Muslim societies must articulate indigenous frameworks grounded in Tawhid to avoid intellectual dependency.

8.4. Environmental Impact

Large-scale robotics can increase e-waste and energy consumption. An Islamic environmental ethic rooted in *amānah* demands life-cycle responsibility and green innovation.

8.5. Educational and Epistemic Gaps

The absence of integrated curricula combining science, ethics, and theology remains a barrier. Institutions like IIUM, UiTM, and others should spearhead “Ethics-in-Robotics” programs based on Tawhidic epistemology to cultivate morally literate engineers.

9. Scholarly and Institutional Responsibilities in Ethical Robotics Governance

Islamic tradition assigns ‘ulamā’ and institutions a collective duty (fard kifāyah) to safeguard the moral integrity of knowledge. Ethical robotics governance requires cooperation across three domains:

1. Scholarly Authority – Fiqh councils must exercise ijtihād to evaluate emerging technologies, issuing guidelines on autonomy, privacy, and data use.
2. Academic Leadership – Universities should institutionalize centers for “Islamic Ethics of Technology,” integrating research, fatwa, and innovation.
3. Policy and Regulation – Governments in Muslim-majority states can adopt Sharī‘ah-aligned technology policies paralleling Islamic finance governance, ensuring transparency, sustainability, and inclusivity.

This tripartite collaboration—the ‘Ulamā’-Engineers-Policymakers Model—translates spiritual values into tangible governance. It mirrors Osman Bakar’s (2012) notion of the knowledge-community (ummah ‘ilmīyyah) founded upon divine unity, where knowledge creation and application serve collective moral purpose.

10. Conclusion: Toward a Tawhidic Framework for Robotics Ethics

The Islamic worldview, anchored in Tawhīd (Divine Unity), Khilāfah (Stewardship), and Maqāṣid al-Sharī‘ah (the higher objectives of divine law), offers a coherent metaphysical paradigm for re-humanizing technology and restoring moral equilibrium in an age of mechanical arrogance. Within this Tawhidic framework, robotics and artificial intelligence cease to be autonomous agents of technocratic power; rather, they become ethical extensions of humanity’s amanah (sacred trust) to nurture, sustain, and perfect creation as part of divine stewardship. As Osman Bakar (2012) articulates, the Tawhidic epistemology affirms the unity of all knowledge, revealed and rational, also reminds us that authentic science must reflect both the intellect (‘aql) and the spirit (rūh). Reintegrating faith and reason, therefore, is not a retreat from modernity but a reclamation of balance against the fragmentation wrought by the mechanistic worldview of post-Enlightenment technoscience.

Yet, this moral reclamation demands vigilance against what Max Horkheimer (1947) of the Frankfurt School once forewarned, that in the triumph of instrumental reason, humanity risks reversing its own sacred order, where once the human soul animated objects, today, through the logic of technocratic rationality, the soul itself is objectified. This “reification of the spirit,” as Horkheimer suggests, represents not progress but a spiritual regression, a world where efficiency dethrones empathy, and intelligence becomes severed from wisdom. The Tawhidic vision thus stands as a metaphysical antidote to this malaise, calling for a return to the unity of knowledge and being, where every act of creation, even in robotics, must bear moral intentionality and divine consciousness.

Hence, the ethical governance of robotics must embody the spiritual virtues of Adl (justice), ensuring fairness and accountability in automation; Rahmah (compassion), designing for human dignity and inclusivity; and Istiqamah (sustainability), safeguarding environmental and social equilibrium. Ultimately, every technological act is, at its core, a moral act. By embedding taqwa, God-consciousness, into the architecture of innovation, Muslim scientists and engineers can transform the very ethos of artificial intelligence: from a pursuit of domination to an act of devotion.

In this sense, each robot built becomes not a rival to humanity, but a humble servant within the cosmic moral order, a testament that knowledge and creation alike remain bound by the unity and mercy of the Divine.

Acknowledgment

The authors would like to express sincere appreciation to the International Islamic University Malaysia (IIUM) and Universiti Teknologi MARA (UiTM) for their continued support of interdisciplinary research integrating Islamic ethics and technological innovation.

References

Abu Dawud. (1990). *Sunan Abu Dawud*

Al-Attas, S. M. N. (1980). *The concept of education in Islam: A framework for an Islamic philosophy of education*. Muslim Youth Movement of Malaysia.

Al-Attas, S. M. N. (2014). *Risalah Untuk Kaum Muslim*. IBFIM.

Bakar, O. (2012). The Qur'ānic identity of the Muslim ummah: Tawhidic epistemology as its foundation and sustainer. *Islam and Civilisational Renewal*, 3(3), 439–452.

Horkheimer, M. (1947). *Eclipse of Reason*. New York: Oxford University Press.

International Federation of Robotics. (2024). *World robotics report 2024*. IFR Press.

Ibn Ḥibbān. (1993). *Sahih Ibn Ḥibbān*. Book 2, Hadith 337.

Muslim, I. (1955). *Sahih Muslim*. Book 21, Hadith 1955.

Qur'an. (Sahih International translation). (2011). *The Qur'an*. AbulQasim Publishing House.

Schwab, K. (2016). *The Fourth Industrial Revolution*. Geneva: World Economic Forum.

World Economic Forum. (2018). *Shaping the Future of the Fourth Industrial Revolution*. Geneva: WEF.