

# Pediatric Vision Development: A Review of Influencing Factors and Emerging Insights

Baqiatu'l Sabiqi 'Assfi Rahmat<sup>1</sup>, Md Mustafa Md-Muziman-Syah<sup>2,3</sup>, Noraishah Mohamed Nor<sup>4</sup>

<sup>1</sup>Department of Optometry, Rehabilitation and Well-being, Faculty of Health and Life Sciences, Management and Science University

<sup>2</sup>Department of Optometry and Visual Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia

<sup>3</sup>Children Health and Wellbeing Research Group, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia

<sup>4</sup>Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia

Corresponding author:

baqiatul\_sabiqi@msu.edu.my



## Abstract

Vision development in pediatric populations is a multifaceted process influenced by biological, environmental, and experiential factors, forming the foundation for cognitive, social, and motor skills essential for lifelong learning and well-being. This narrative review explores the stages of pediatric vision development, emphasizing critical milestones such as visual acuity, depth perception, and color vision. Prenatal and neonatal factors, including maternal health, genetic predispositions, and early sensory exposure, play pivotal roles in shaping initial visual capabilities. During infancy and early childhood, visual abilities evolve through experiences that refine perceptual processing, enabling children to interact effectively with their environment. Environmental influences, such as nutrition, sunlight exposure, and socioeconomic status, further modulate vision development, while emerging challenges like excessive screen time are linked to rising myopia prevalence and digital eye strain. Common pediatric vision disorders, including amblyopia, refractive errors, and strabismus, are examined, highlighting the importance of early detection and intervention to prevent developmental delays and academic difficulties. Untreated vision impairments can lead to broader consequences, including mental health challenges, underscoring the need for systematic vision screening and parental education. Collaborative efforts involving healthcare providers, educators, and policymakers are essential to optimize visual outcomes. This review identifies gaps in current research and proposes future directions, including multidisciplinary studies, standardized screening tools, and guidelines for digital media use, aiming to enhance pediatric vision health and promote lifelong success for children.

## Keywords :

Pediatric vision development, Influencing factors, Early intervention, Digital eye strain, Vision screening

## Introduction

Vision development in pediatric populations is a multifaceted process that encompasses various stages, each playing a pivotal role in shaping a child's ability to interpret visual information effectively. From the moment of birth, infants exhibit intrinsic visual responses, which evolve through critical periods influenced by sensory input and environmental interactions. These early months are particularly crucial as disruptions during this time can lead to persistent impairments in both visual and overall developmental outcomes (Braddick & Atkinson, 2011). As children grow, their visual abilities such as depth perception, color discrimination, and coordination, are refined through experiences that challenge and enhance their perceptual processing. Effective vision development is not merely about achieving optimal visual acuity but also involves integrating vision with other sensory modalities to support learning and social interaction (Johnson, 2011).

The importance of understanding these dynamics cannot be overstated, as they establish the foundation for cognitive and social skills essential for lifelong learning. Early visual experiences play a pivotal role in shaping neural pathways and cognitive functions, with any interruptions potentially resulting in long-term deficits (Livingston et al., 2020). Furthermore, the impact extends beyond individual health, influencing educational performance and social interactions. Recent research highlights the significance of preventive strategies and early interventions in reducing risks associated with visual impairments, ultimately improving quality of life (Wallace et al., 2017). The connection between vision development and broader developmental milestones underscores the need for continuous research, particularly in identifying and addressing early indicators of visual impairments.

Addressing such issues ensures that children reach their full potential, making it essential for researchers and practitioners to prioritize studies focused on visual development in pediatric populations. This review aims to provide a comprehensive exploration of vision development in pediatric populations, focusing on identifying critical influencing factors, including socioeconomic, genetic, and environmental determinants, while addressing gaps in current research, such as the impact of adverse childhood experiences on visual outcomes. By synthesizing existing knowledge, the review seeks to highlight the necessity of standardized screening methods and establish a foundation for future research in vision screening and developmental assessment.

## Stages of Vision Development

### Prenatal and Neonatal Vision Development

The foundation for vision begins prenatally, with significant developments occurring as early as the second trimester. By this stage, the retina is nearly fully developed, enabling rudimentary light perception (Mercuri et al., 2007). However, maternal health plays a critical role during this period; exposure to toxins, infections, or nutritional deficiencies can disrupt ocular development, underscoring the importance of prenatal care (Birch & O'Connor, 2001; Oktarina et al., 2024). Advances in fetal imaging technologies, such as ultrasound and MRI, have enabled earlier detection of congenital ocular anomalies, including microphthalmia, thereby facilitating timely intervention. (Brémond-Gignac et al., 2011).

At birth, neonatal vision is characterized by limited acuity, typically ranging from 20/400 to 20/600, and reduced contrast sensitivity. Infants primarily respond to high-contrast patterns and movement, relying on these stimuli to drive the maturation of neural pathways in the occipital cortex and thalamus (Mercuri et al., 2007). Social interactions and exposure to dynamic stimuli further enhance this process, fostering rapid improvements in visual function (Brémond-Gignac et al., 2011). Preterm infants face heightened risks, including delayed emmetropization and retinopathy of prematurity (ROP), conditions linked to abnormal axial elongation and refractive errors (Saunders et al., 2002). Standardized assessments, such as the Neonatal Visual Assessment, evaluate fixation, tracking, and stripe discrimination, offering critical insights into early visual function and guiding rehabilitation strategies (Mercuri et al., 2007; Livingston et al., 2020).

## **Milestones in Visual Acuity and Perception During Infancy**

Visual acuity improves rapidly during infancy, reaching approximately 20/20 by ages 3–5 years, driven by foveal maturation and synaptic pruning in the visual cortex (Brémond-Gignac et al., 2011). By six months, infants exhibit preferential looking toward complex patterns, signalling advancing spatial resolution (Van der Looven et al., 2020). Key milestones include the emergence of smooth pursuit tracking at 2–3 months and binocular convergence by 4–5 months, both of which are critical for depth perception (Mercuri et al., 2007). Delays in achieving these milestones may indicate underlying conditions such as amblyopia or cerebral visual impairment, necessitating early screening and intervention (Wallace et al., 2017; Alkhatib, 2023).

## **Development of Depth Perception and Color Vision in Early Childhood**

Depth perception evolves significantly during early childhood, transitioning from reliance on monocular cues, such as motion parallax, to binocular stereopsis by six months (Mercuri et al., 2007; Kiuchi et al., 2023). This progression is facilitated by the cortical integration of dorsal and ventral visual streams, which enhances the brain's ability to interpret three-dimensional space (Fisher et al., 2022). Similarly, color vision progresses from red-green discrimination at three months to full spectral sensitivity by six months, paralleling increases in cone density in the fovea (Brémond-Gignac et al., 2011; Patel et al., 2023). Environmental enrichment, such as exposure to varied visual stimuli, supports these developments, whereas deprivation, including uncorrected refractive errors, can lead to amblyogenic pathways (Patel et al., 2023). Understanding these stages of vision development provides a framework for identifying disruptions and implementing timely interventions, ensuring optimal visual outcomes for pediatric populations.

## **Influencing Factors of Pediatric Vision Development**

### **Genetic and Epigenetic Determinants**

Genetic factors play a fundamental role in shaping pediatric vision development, with specific mutations and polymorphisms contributing to both normal variations and pathological conditions. For instance, mutations in mitochondrial DNA, such as those causing Leber's hereditary optic neuropathy (LHON), disrupt the function of retinal ganglion cells, leading to progressive vision loss (Mbekeani et al., 2017). LHON underscores the intricate interplay between heredity and visual outcomes, as individuals carrying these mutations often experience sudden, painless central vision impairment during adolescence or early adulthood. Similarly, polymorphisms in genes associated with myopia, such as *PAX6*, illustrate how genetic predispositions interact with environmental triggers like excessive near-work to influence refractive errors (Hornbeak & Young, 2009; Patel et al., 2023). These findings highlight the complexity of genetic contributions to pediatric vision, emphasizing the need for personalized approaches to diagnosis and intervention.

Epigenetic modifications further complicate the genetic landscape of vision development by introducing an additional layer of regulation influenced by maternal and environmental factors. For example, maternal nutrition during pregnancy has been shown to modulate epigenetic markers that affect ocular development. Deficiencies in essential nutrients, such as folate and omega-3 fatty acids, can alter DNA methylation patterns, potentially increasing the risk of congenital eye disorders (Oktarina et al., 2024). Similarly, maternal stress during gestation has been linked to altered gene expression in the developing fetus, with implications for visual system maturation (Smithers et al., 2008). While the precise mechanisms remain under investigation, these findings underscore the importance of prenatal care in mitigating epigenetic risks to pediatric vision.

Recent advances in genomic technologies have expanded our understanding of the genetic and epigenetic determinants of vision development. Genome-wide association studies (GWAS) have identified novel loci associated with refractive errors, strabismus, and amblyopia, paving the way for targeted therapies (Kiuchi et al., 2023). Additionally, epigenetic research has begun to explore the reversibility of certain modifications, offering hope for interventions that could mitigate the effects of adverse prenatal conditions (Simmer et al., 2021). Despite these promising developments, significant gaps remain in our

understanding of how genetic and epigenetic factors interact to shape pediatric vision. Future research must focus on longitudinal studies to elucidate these interactions and validate predictive models for early detection and intervention (Bouma et al., 2022). By integrating genetic and epigenetic insights into clinical practice, healthcare providers can better tailor interventions to individual needs, ultimately improving visual outcomes for pediatric populations.

### **Environmental and Nutritional Influences**

Environmental and nutritional factors are pivotal in shaping pediatric vision development, with postnatal nutrition playing a particularly critical role. Long-chain polyunsaturated fatty acids (LCPUFAs), especially docosahexaenoic acid (DHA), are essential for photoreceptor membrane formation and cortical plasticity, processes that underpin visual acuity and cognitive function (Smithers et al., 2008; Simmer et al., 2021). Breastfed infants consistently demonstrate superior visual acuity compared to formula-fed peers, a difference attributed to the bioavailability of DHA in breast milk (Innis et al., 2008). This highlights the importance of promoting breastfeeding as a public health strategy to optimize visual outcomes in early childhood.

Conversely, nutritional deficiencies can have profound and lasting impacts on pediatric vision. Vitamin A deficiency remains one of the leading causes of preventable childhood blindness globally, affecting millions of children in low-income regions (Orina et al., 2024). This deficiency disrupts the synthesis of rhodopsin, a critical component of phototransduction, leading to night blindness and, if untreated, corneal damage (Patel et al., 2023). Addressing this issue requires targeted interventions, such as vitamin A supplementation programs and dietary diversification initiatives, to ensure adequate intake during critical developmental periods (Saunders et al., 2002). Similarly, iron deficiency anemia has been linked to impaired cognitive and visual development, further emphasizing the interconnectedness of nutrition and pediatric health (Oktarina et al., 2024).

Environmental factors, including sunlight exposure and socioeconomic status, also significantly influence vision development. Inadequate sunlight exposure has been identified as a risk factor for nutritional rickets, a condition that indirectly affects ocular health by impairing overall growth and development (Orina et al., 2024). Moreover, socioeconomic disparities often limit access to nutritious foods, healthcare services, and educational resources, exacerbating the risk of vision disorders among disadvantaged populations (Livingston et al., 2020). Addressing these inequities requires a multidisciplinary approach involving policymakers, healthcare providers, and community organizations to create supportive environments that foster optimal visual outcomes.

Together, these findings underscore the critical role of environmental and nutritional influences in pediatric vision development. By prioritizing interventions that address these factors, we can mitigate risks and promote lifelong visual health for children worldwide.

### **Digital Exposure and Screen Time**

The rapid proliferation of digital devices has introduced new challenges for paediatric vision development, with prolonged screen time emerging as a significant risk factor for visual impairments. Studies conducted during the COVID-19 pandemic revealed a marked increase in myopia prevalence among children, largely attributed to reduced outdoor light exposure and increased accommodative strain from extended use of digital screens (Patel et al., 2023). Optical coherence tomography (OCT) analyses have further demonstrated structural retinal changes, such as thinning, in children with excessive device use, suggesting potential long-term effects on ocular health (Bouma et al., 2022). These findings highlight the urgent need for guidelines to regulate screen time and promote healthier visual habits.

Digital eye strain, or computer vision syndrome, is another growing concern associated with prolonged screen exposure. Symptoms include dry eyes, blurred vision, headaches, and neck pain, all of which can interfere with daily activities and academic performance (Rosenfield, 2011). In response to these concerns, the World Health Organization recommends (WHO) limiting screen time to less than one hour per day for preschoolers, emphasizing the importance of balancing digital engagement with outdoor play and other visually enriching activities (WHO, 2019). Such recommendations align with evidence suggesting

that outdoor light exposure plays a protective role against myopia by stimulating dopamine release in the retina, which inhibits axial elongation (Kiuchi et al., 2023).

Parental education and collaborative efforts between healthcare providers, educators, and policymakers are essential to mitigate the adverse effects of digital exposure. Educational campaigns can raise awareness about the risks of excessive screen time and promote strategies to reduce its impact, such as the 20-20-20 rule, taking a 20-second break every 20 minutes to view something 20 feet away (Fisher et al., 2022). Schools can integrate these practices into their curricula, while policymakers can advocate for regulations that ensure age-appropriate digital content and usage limits. By addressing the challenges posed by digital media, we can safeguard pediatric vision health and support holistic development in an increasingly digital world.

### **Common Pediatric Vision Disorders: Diagnosis, Impact, and Intervention Strategies**

Pediatric vision disorders, including amblyopia, refractive errors, and strabismus, represent some of the most prevalent yet treatable conditions affecting children's visual health. Amblyopia, commonly referred to as "lazy eye," occurs when abnormal visual development leads to reduced vision in one or both eyes, often due to untreated refractive errors or misalignment (Alkhatib, 2023). Early detection is critical, as the condition is most responsive to treatment during the critical period of visual development, typically before age 7 (Wallace et al., 2017). Treatment options include corrective lenses, patching the stronger eye to strengthen the weaker one, and vision therapy exercises designed to improve binocular coordination (Mercuri et al., 2007). Untreated amblyopia can result in permanent visual deficits, underscoring the importance of systematic vision screening programs in schools and pediatric clinics.

Refractive errors, such as myopia, hyperopia, and astigmatism, are another common category of pediatric vision disorders. Myopia, in particular, has seen a dramatic rise in prevalence, with studies linking its escalation to increased near-work activities and reduced outdoor light exposure (Patel et al., 2023). Refractive errors are typically corrected with glasses or contact lenses, though emerging interventions like orthokeratology and low-dose atropine eyedrops show promise in slowing myopia progression (Kiuchi et al., 2023). Regular eye examinations are essential for detecting refractive errors early, as uncorrected conditions can hinder academic performance, social interactions, and overall quality of life (Livingston et al., 2020).

Strabismus, characterized by misaligned eyes, poses additional challenges to pediatric vision development. This condition disrupts binocular vision and depth perception, often leading to amblyopia if left untreated (Alkhatib, 2023). Treatment approaches vary depending on the severity and type of strabismus, ranging from corrective lenses and prism glasses to surgical realignment of the ocular muscles (Brémont-Gignac et al., 2011). Early intervention is crucial, as delays can result in irreversible impairments in visual function and psychosocial well-being (Fisher et al., 2022).

The impact of untreated pediatric vision disorders extends beyond individual health, influencing educational outcomes and mental health. Children with undiagnosed vision problems often struggle academically, experiencing difficulties with reading, writing, and attention (Hopkins et al., 2017). These challenges can lead to frustration, low self-esteem, and social withdrawal, further exacerbating the negative consequences of untreated conditions (Webber & Wood, 2005). Collaborative efforts involving healthcare providers, educators, and parents are essential to ensure timely diagnosis and intervention, ultimately preventing developmental delays and promoting lifelong success for affected children.

### **Gaps in Current Research and Proposed Directions for Future Studies**

Despite significant advancements in understanding pediatric vision development, notable gaps persist in the existing body of research, warranting further exploration to optimize visual outcomes for children. One critical area requiring attention is the lack of standardized screening tools for early detection of vision impairments. While vision screening programs exist in many regions, inconsistencies in protocols and methodologies often lead to missed diagnoses, particularly in underserved populations (Livingston et al., 2020). Developing universally accepted screening guidelines, supported by robust validation studies, would enhance the reliability and accessibility of early interventions, ensuring equitable care for all children.

(Wallace et al., 2017). Future research should prioritize longitudinal studies to evaluate the efficacy of these tools across diverse demographic groups, accounting for variations in socioeconomic status, ethnicity, and geographic location.

Another gap lies in the limited understanding of the long-term effects of adverse childhood experiences (ACEs) on vision development. While ACEs have been extensively studied in relation to mental and physical health, their impact on ocular health remains underexplored (Oktarina et al., 2024). Chronic stress, neglect, and trauma may influence neurodevelopmental pathways, potentially disrupting visual processing and perception (Smithers et al., 2008). Multidisciplinary studies integrating ophthalmology, psychology, and neuroscience are needed to elucidate these connections and inform targeted interventions for vulnerable populations (Patel et al., 2023).

Additionally, the rising prevalence of digital media use among children presents a contemporary challenge that demands urgent investigation. Although recent studies have highlighted the correlation between excessive screen time and myopia, the underlying mechanisms remain poorly understood (Bouma et al., 2022). Further research is required to explore the structural and functional changes in the retina and visual cortex associated with prolonged digital exposure, as well as the potential reversibility of these effects through lifestyle modifications (Kiuchi et al., 2023). Collaborative efforts involving technologists, healthcare providers, and educators are essential to develop evidence-based guidelines for safe and age-appropriate digital media use, balancing the benefits of technology with the need to protect pediatric vision health (WHO, 2019). By addressing these gaps, researchers can pave the way for innovative strategies that enhance pediatric vision development and promote lifelong well-being for children.

### **Conclusion: Optimizing Pediatric Vision Development Through Multifaceted Approaches**

Pediatric vision development is a dynamic and intricate process shaped by the interplay of genetic, environmental, and experiential factors. Emerging insights into prenatal diagnostics, nutritional interventions, and screen-time management offer promising avenues for optimizing visual outcomes and mitigating risks associated with developmental impairments. The integration of advanced imaging technologies, such as ultrasound and MRI, enables early detection of congenital ocular anomalies, facilitating timely interventions that can significantly alter developmental trajectories (Brémond-Gignac et al., 2011). Similarly, the role of nutrition, particularly long-chain polyunsaturated fatty acids like DHA, underscores the importance of promoting breastfeeding and addressing micronutrient deficiencies to support ocular health (Smithers et al., 2008; Innis et al., 2008). These findings highlight the critical need for multidisciplinary collaboration among healthcare providers, educators, and policymakers to create supportive environments that foster optimal visual development.

However, significant challenges remain, particularly in addressing the rising prevalence of myopia and digital eye strain linked to excessive screen time. Evidence suggests that prolonged exposure to digital devices not only increases the risk of refractive errors but also induces structural changes in the retina, emphasizing the urgency of establishing evidence-based guidelines for digital media use (Patel et al., 2023; Bouma et al., 2022). Parental education and community-based initiatives are essential to raise awareness about the risks of excessive screen time and promote healthier visual habits, such as adhering to the 20-20-20 rule and ensuring adequate outdoor light exposure (Rose et al., 2008; Fisher et al., 2022).

To bridge existing gaps in research, future studies must prioritize longitudinal investigations into gene-environment interactions, the long-term effects of adverse childhood experiences on vision, and the efficacy of standardized screening tools across diverse populations (Livingston et al., 2020; Oktarina et al., 2024). Such efforts will not only enhance our understanding of pediatric vision development but also inform the development of targeted interventions that address the unique needs of vulnerable populations. By fostering collaboration and innovation, we can ensure equitable access to vision care, empowering children to achieve their full potential and thrive in an increasingly visual world.

## References

- Alkhatib, A. W. (2023). Pediatric ophthalmology: Amblyopia (Lazy Eye), strabismus, and pediatric eye examinations. *Sch Acad J Pharm*, 12(6), 140-144. <https://doi.org/10.36347/sajp.2023.v12i06.004>
- Birch, E.E., & O'Connor, A.R. (2001). Preterm birth and visual development. *Seminar in Perinatology*, 25(3), 187-193. [http://doi.org/10.1053/siny.2001.0077](https://doi.org/10.1053/siny.2001.0077)
- Bouma, B. E., et al. (2022). Optical coherence tomography. *Nature Reviews Methods Primers*, 2(1), 79. <https://doi.org/10.1038/s43586-022-00162-2>
- Braddick, O., & Atkinson, J. (2011). Development of human visual function. *Vision Research*, 51(13), 1588-1609. <https://doi.org/10.1016/j.visres.2011.02.018>
- Brémond-Gignac, D., et al. (2011). Visual development in infants: Physiological and pathological mechanisms. *Current Opinion in Ophthalmology*, 22 (5), 361-367. <https://doi.org/10.1097/01.icu.0000397180.37316.5d>
- Fisher, R. S., et al. (2022). Visually sensitive seizures: An updated review. *Epilepsia*, 63 (4), 739-768. <https://doi.org/10.1111/epi.17175>
- Hopkins, S. et al., (2017). Vision problems and reduced reading outcomes in Queensland schoolchildren. *Optometry and Vision Science*, 94(3), 345-352. <https://doi.org/10.1097/OPX.00000000000001032>
- Hornbeak, D. M., & Young, T. L. (2009). Myopia genetics: A review. *Current Opinion in Ophthalmology*, 20(5), 356-362. <https://doi.org/10.1097/ICU.0b013e32832f8040>
- Innis, S. M., et al. (2008). Essential n-3 fatty acids in pregnant women and early visual acuity maturation. *American Journal of Clinical Nutrition*, 87(2), 457-464. <https://doi.org/10.1093/ajcn/87.3.548>
- Johnson, S.P. (2011). Development of visual perception. *Wiley Interdiscip Rev Cogn Sci*, 2(5), 515-528. <https://doi.org/10.1002/wcs.128>
- Kiuchi, Y., et al. (2023). The Japan Glaucoma Society guidelines for glaucoma. *Japanese Journal of Ophthalmology*, 67(1), 1-15. <https://doi.org/10.1007/s10384-022-00970-9>
- Livingston, G., et al. (2020). Dementia prevention, intervention, and care. *The Lancet*, 396(10248), 413-446. [https://doi.org/10.1016/S0140-6736\(20\)30367-6](https://doi.org/10.1016/S0140-6736(20)30367-6)
- Mercuri, E., et al. (2007). The development of vision. *Early Human Development*, 83(12), 795-800. <https://doi.org/10.1016/j.earlhumdev.2007.09.014>
- Mbekeani, J. N., et al. (2017). Etiology of optic atrophy: A prospective study. *Annals of Saudi Medicine*, 37 (3), 232-239. <https://doi.org/10.5144/0256-4947.2017.232>
- Oktarina, C., et al. (2024). Relationship between iron deficiency anemia and stunting in pediatric populations. *Children*, 11(10), 1268. <https://doi.org/10.3390/children11101268>
- Orina, L. K., et al. (2024). Inadequate sunlight exposure as a risk factor for nutritional rickets. *African Journal of Nutrition and Dietetics*, 3(1), 157-161. <https://doi.org/10.58460/ajnd.v3i1.90>
- Patel, P. A., & Boyd, C. J. (2023). Altmetric analysis in pediatric ophthalmology. *Journal of Pediatric Ophthalmology & Strabismus*, 60(5), 378-379. <https://doi.org/10.3928/01913913-20230706-01>
- Rose, K.A., et al. (2008). Outdoor activity reduces the prevalence of myopia in children. *Ophthalmology*, 115(8), 1279-1285. <https://doi.org/10.1016/j.ophtha.2007.12.019>
- Rosenfield, M. (2011). Computer vision syndrome: A review of ocular causes and potential treatments. *Ophthalmic and Physiological Optics*, 31(5), 502-515. <https://doi.org/10.1111/j.1475-1313.2011.00834.x>
- Saunders, K. J., et al. (2002). Emmetropisation following preterm birth. *British Journal of Ophthalmology*, 86(9), 1035-40. <https://doi.org/10.1136/bjo.86.9.1035>
- Simmer, K., et al. (2021). Long-chain polyunsaturated fatty acid supplementation in term infants. *Cochrane Database of Systematic Reviews*, 2021(4), CD000376. <https://doi.org/10.1002/14651858.CD000376>
- Smithers, L. G., et al. (2008). Higher dose of docosahexaenoic acid improves visual acuity in preterm infants. *American Journal of Clinical Nutrition*, 88(4), 1049-1056. <https://doi.org/10.1093/ajcn/88.4.1049>

- Van der Looven, R., et al. (2021). Hand size representation in children. *Journal of Experimental Child Psychology*, 203, 105016. <https://doi.org/10.1016/j.jecp.2020.105016>
- Wallace, D. K., et al. (2017). Amblyopia Preferred Practice Pattern. *Ophthalmology*, 124(1), P105-P142. <http://dx.doi.org/10.1016/j.ophtha.2017.10.008>
- Webber, A.L., & Wood, J. (2005). Amblyopia: prevalence, natural history, functional effects and treatment. *Clin Exp Optom*, 88(6), 365-375. <https://doi.org/10.1111/j.1444-0938.2005.tb05102.x>
- World Health Organization. (2019). *Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age*. Geneva: WHO. <https://www.who.int/publications/i/item/9789241550536>