

Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Scopus

Search

Sources

SciVal

FA

[Back](#)

Xanthorrhizol derivatives as hyaluronidase inhibitors: In silico fragment-based drug design, in vitro evaluation and molecular dynamics simulations

[Journal of Molecular Structure](#) • Article • 2026 • DOI: 10.1016/j.molstruc.2025.143899

Tengku Nazmi, Tengku Kamilah^a; Aminudin, Nurul Iman^{a, b} ; Md Pisar, Mazura^c; Mohd Hashim, Siti Nur Aisyah^c; Hamzah, Nurasyikin^{a, b, e}; [+1 author](#)

^a Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Pahang, Kuantan, 25200, Malaysia

[Show all information](#)

0

Citations

[Full text](#) [Export](#)

[Document](#) [Impact](#) [Cited by \(0\)](#) [References \(59\)](#) [Similar documents](#)

Abstract

In this study, the anti-inflammatory potential of xanthorrhizol (XNT), a natural compound isolated from *Curcuma xanthorrhiza*, was enhanced through structural optimisation using in silico fragment-based drug design (FBDD) and molecular docking, targeting the hyaluronidase enzyme. The design process yielded five XNT derivatives: one known compound (2) and four novel derivatives (3–6). Derivative (3) exhibited the most favourable drug-likeness property and showed the most potent activity ($IC_{50} = 44.54 \mu\text{g/mL}$) markedly lower than XNT (1) ($IC_{50} = 203.56 \mu\text{g/mL}$). Furthermore, molecular dynamics simulation revealed that derivative (3) maintained a stable interaction within the hyaluronidase binding pocket with key amino acid residues, with a favourable binding free energy of -26.95 kcal/mol as calculated by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method. These findings suggest that derivative (3) holds a promise as hyaluronidase inhibitor and potentially to be further developed as anti-inflammatory agent. © 2025 Elsevier B.V.

Author keywords

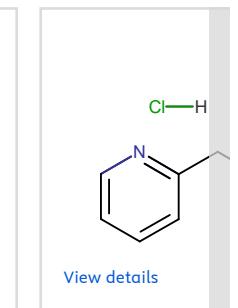
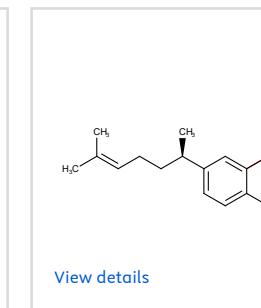
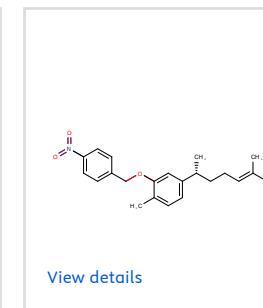
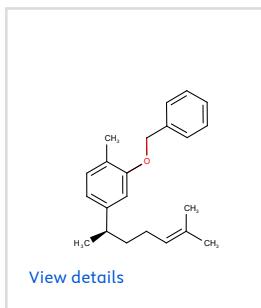
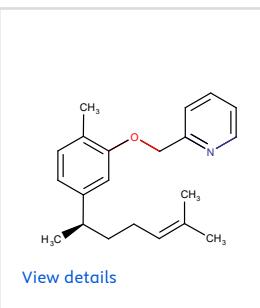
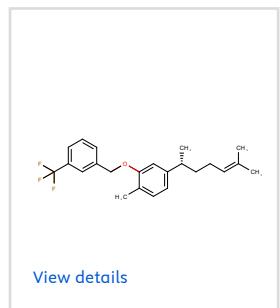
ADME; Fragment-based drug design; Hyaluronidase; Molecular dynamics; Optimisation; Xanthorrhizol

Indexed keywords

Engineering controlled terms

Binding energy; Design; Drug delivery; Drug discovery; Free energy; Molecular docking; Molecular mechanics

Engineering uncontrolled terms







ADME; Anti-inflammatories; Drug Design; Dynamics simulation; Fragment-based drug design; Hyaluronidase; In-silico; In-vitro evaluation; Optimisations; Xanthorrhizol

Engineering main heading

Molecular dynamics

Reaxys Chemistry database information

Reaxys is designed to support chemistry researchers at every stage with the ability to investigate chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data.

Substances[View all substances \(12\)](#)Powered by Reaxys**Funding details**

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Ministry of Higher Education, Malaysia	MOHE	

Funding text

The financial support by the Fundamental Research Grant Scheme FRGS/1/2018/STG01/UIAM/03/3 (FRGS19\u2013u2013029\u2013u20130637) from the Ministry of Higher Education (MOHE) Malaysia is gratefully acknowledged.

Corresponding authors