

Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Scopus

[Back](#)

Stochastic virtual patient-guided mechanical ventilation treatment: A virtual patient study with mechanical power consideration

[IFAC Journal of Systems and Control](#) • Article • Open Access • 2025 •

DOI: 10.1016/j.ifacsc.2025.100334

[Ang, Christopher Yew Shuen^a](#); [Chiew, Yeong Shiong^a](#) ; [Wang, Xin^a](#); [Ooi, Ean Hin^a](#); [Nor, Mohd Basri Mat^b](#); [+3 authors](#)

^a School of Engineering, Monash University Malaysia, Selangor, Malaysia

[Show all information](#)

0

Citations

[View PDF](#)

[Full text](#)

[Export](#)

[Save to list](#)

[Document](#)

[Impact](#)

[Cited by \(0\)](#)

[References \(86\)](#)

[Similar documents](#)

Abstract

Background and Objective: Computerised decision support systems (CDSS) in mechanical ventilation (MV) provide individualised, closed-loop treatment but often require extensive input parameters, which are challenging to obtain continuously in clinical settings. Many also fail to incorporate mechanical power (MP) and MP ratio — recently identified as significant predictors of patient outcomes. This study introduces the Stochastic Virtual Patient Ventilation Protocol (SVP VENT), a model-based CDSS addressing these limitations. **Methods:** The SVP VENT Protocol integrates a stochastic virtual patient model to predict temporal lung elastance, E_{rs} , trends and deliver closed-loop, lung protective ventilation minimising MP ratio and driving pressure. The protocol was validated against the VENT and SiVENT protocols using an established virtual patient platform comprising over 1229 h of both volume control (VC) and pressure control (PC) retrospective

MV data. Patient responses were monitored to ensure adherence to accepted clinical safety guidelines. Results: : The SVP VENT protocol consistently outperformed retrospective clinical data, VENT and SiVENT protocols in ensuring adherence to clinical safety metrics, achieving an all-adherence rate of ~57% and ~67% for the VC and PC cohorts, respectively. Across cohorts, the protocol maintained MP and MP ratio levels below safety thresholds (12 J/min and 4.5, respectively), and extended intervention intervals up to 3 h, potentially reducing clinical workload. Conclusion: : Overall, the virtual trial demonstrates the SVP VENT protocol's potential to enhance MV management by extending intervention intervals, while maintaining patient safety. These findings support initial clinical trials to evaluate the protocol's impact on clinical workload and patient safety over prolonged monitoring periods, facilitating its integration into standard clinical practices. © 2025 The Author(s)

Author keywords

Decision making; Mechanical ventilation; Model-based protocol; Respiratory mechanics; Stochastic modelling; Virtual patients

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Monash Medical Engineering and Technology Research Hub		
KPJ Healthcare University		

Funding text

The authors would like to thank the Monash Medical Engineering and Technology Research Hub (MET) and KPJ Healthcare University for supporting this research.

Corresponding authors

Corresponding author	Y.S. Chiew
Affiliation	School of Engineering, Monash University Malaysia, Selangor, Malaysia

Email address

chiew.yeong.shiong@monash.edu

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Funding details

Corresponding authors

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)